Prevalence of Asymptomatic Bacteriuria in Children and Adolescents with Type 1 Diabetes Mellitus

Thesis

 $Submitted \ for \ partial \ fulfillment \ of \ Master \ degree$ $in \ Pediatrics$

By

Marwah Ahmed Attieh Mohammed (M.B., B.Ch-2002)

Under supervision of

Prof. Dr. Mona Abdel-Kader Salem

Professor of Pediatrics
Faculty of Medicine- Ain Shams University

Ass.Prof.Dr. Randa Mahmoud Asaad Sayed Matter

Assistant Professor of Pediatrics
Faculty of Medicine- Ain Shams University

Dr. Abeer Ahmed Abdel-Maksoud

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2009

S Contents

Contents

Subjects	Page
Introduction and	1
Aim of the work	3
Review of literature	
1-Diabetes mellitus	4
Definition	4
Diagnosis and classification	5
Complications of DM	17
Treatment of DM	29
2-Urinary tract infection	43
Definition &pathology	43
Diagnosis of UTIs	52
Asymptomatic bacteriuria	62
Complications of UTIs &ASB	67
Treatment of UTIs & ASB	68
Subjects& methods	74
Results	82
Discussion	121
Summary & conclusions	136
Recommendations	139
References	140
Arabic summary	

List of Abbreviations

List of abbreviations

ADAAmerican Diabetes Association

AERAlbumin excretion rate

AIDS Acquired Immune Deficiency Syndrome

ASBAsymptomatic bacteriuria

AUC.....Area under the curve

BMI ·····Body Mass Index

CDCCenters for Diseases Control and prevention

CFU ·····Colony forming unit

CGMS······Continuous glucose monitoring system

CI.....Confidence interval

CSIIContinuous subcutaneous insulin infusion

CT ·····Computed tomography

CTLA-4 ······Cytotoxic T lymphocyte antigen 4

DCCT ······Diabetes Control and Complications Trial research group

DKADiabetic Ketoacidosis

DM·····Diabetes mellitus

DMSA Dimercaptosuccinic acid

DNA Deoxyribonucleic acid

ER ·····Emergency room

ESRD End-stage renal disease

FPG·····Fasting plasma glucose

🕏 List of Abbreviations

List of abbreviations (Cont.)

GAD	··Glutamic Acid Decarboxylase
GDM	··Gestational diabetes mellitus
HbA1c······	··Glycosylated hemoglobin
HBD-1 ·······	·Human beta-defensin-1
HHS	·Hyperosmolar hyperglycemic state
HLA	·Human Leucocytic Antigen
HNF1α·······	· Hepatic nuclear transcription factor 1 alpha
HNF4α·······	·Hepatic nuclear transcription factor regulating
	HNF1α
HNS	· Hyperosmolar non-ketotic state
IAA	·Insulin autoantibodies
ICA	··Islet cell antibodies
ICU	·Intensive care unit
IFG······	·Impaired fasting glycemia
IGT	·Impaired glucose tolerance
ISPAD	·International society for pediateric and
	adolescents Diabetes
IVP	·Intravenous pyelogram
LDL	Low density lipoprotein
MODY ······	·Maturity onset diabetes in young
MRBG ······	·Mean random blood glucose
MRI ·····	·Magnetic Resonance Imaging
NPDR ······	·Non-proliferative diabetic retinopathy
NPH	·Neutral Protamine Hagedron

List of Abbreviations

List of abbreviations (Cont.)

OGTTOral glucose tolerance test

O.ROdds Ratio.

PDRProliferative diabetic retinopathy

P.....Statistical value

ROC..... Receiver Operating Characteristic

SB ·····Significant bacteriuria

SD.....Standard deviaton

SGG ·····Sialosyl galactosyl globoside

SMBG·····Self-monitoring of blood glucose

SPA·····Suprapubic aspiration

SPSSStaistical package for social sciences

TMP-SMX ···· Trimethoprim-sulfamehoxazole

UAEUrinary albumin excretion

UKDPSUnited Kingdom Diabetes Prospective Studies

UPECUropathogenic E. coli

UTIUrinary tract infection

VCUGVoiding cystourethrogram

WHO World Health Organization

X ······Mean

List of Tables

List of Tables

Table No.	Table title	Page No.
1	Etiological classification of diabetes mellitus.	15
2	Criteria for the diagnosis of diabetes.	16
3	Diagnostic criteria of diabetic ketoacidosis.	19
4	Classification of Diabetic Neuropathy.	28
5	Types of insulin preparations and suggested action profiles.	31
6	Diagnosis of urinary tract infection.	59
7	Oral antimicrobial agents useful for pediatric urinary tract prophylaxis.	73
8	Descriptive data of diabetic patients and controls.	82
9	Comparison between diabetic patients &controls regarding age, anthropometric measures.	83
10	Comparison between diabetic patients and controls regarding ASB.	84
11	Descriptive data of diabetic patients with HbA1cbelow and above 7.5%.	85
12	Comparison between diabetic patients with HbA1c below and above 7.5% regarding age, anthropometric measures, RBG and duration of DM.	86
13	Comparison between diabetic patients with HbA1c below and above 7.5% regarding ASB.	87
14	Descriptive data of diabetic patients with positive or negative urine culture.	88
15	Comparison between diabetic patients with positive or negative urine culture as regards age, DM duration, RBG and HbA1c%.	88
16	Descriptive data of pre and post pubertal female diabetic patients regarding anthropometric measures, RBG, duration of DM and microalbuminuria.	89

List of Tables

Table No.	Table title	Page No.
17	Comparison between pre and postpubertal female diabetic patients.	90
18	Comparison between diabetic patients and controls as regards gender distribution.	91
19	Comparison between diabetic patients and controls as regards age (years) distribution among males and females.	91
20	Comparison between diabetic patients and controls as regards urine analysis.	92
21	Comparison between diabetic patients and controls as regards distribution of different cultured organisms.	93
22	Comparison between diabetic patients and controls with ASB as regards distribution of Gram positive and negative organisms.	94
23	Comparison between diabetic patients and controls with ASB as regards sensitivity of different cultured organisms.	95
24	Comparison between diabetic patients with HbA1c below and above 7.5% as regards their gender.	97
25	Comparison between diabetic patients with HbA1c below and above 7.5% as regards urine analysis.	98
26	Comparison between diabetic patients with HbA1c below and above 7.5% as regards the presence of microvascular complications:	99
27	Comparison between diabetic patients with HbA1c below and above 7.5% with positive culture as regards distribution of different cultured organisms.	100
28	Comparison between diabetic patients with HbA1c below and above 7.5% as regards distribution of gram positive and negative organisms.	102

List of Tables

Table	Table title	Page
No.	Table title	No.
29	Comparison between diabetic patients with HbA1c below and above 7.5% as regards sensitivity of different cultured organisms.	103
30	Comparison between patients and controls with ASB as regards their genders.	105
31	Comparison between patients with and without ASB regarding microalbuminuria.	106
32	Comparison between patients with and without ASB regarding presence of microvascular complications.	107
33	Comparison between pre and postpubertal diabetic females regarding urine analysis.	108
34	Comparison between pre and postpubertal diabetic females regarding the presence of microvascular complications.	109
35	Comparison between pre and postpubertal diabetic females regarding ASB.	110
36	Comparison between pre and postpubertal female diabetic patients as regards distribution of different cultured organisms.	112
37	Comparison between pre and postpubertal female diabetic patients as regards distribution of gram positive and negative organisms.	114
38	Comparison between pre and postpubertal female diabetic patients as regards sensitivity of different cultured organisms.	115
39	Correlation between HbA1c and age, duration of D.M. and R.B.G.	117
40	Comparison between control subjects with +ve and –ve cultures as regards pyuria.	118
41	Properties of pus cells test as an indicator for positive culture in controls.	119
42	Comparison between diabetic patients with +ve and –ve cultures as regards pyuria.	119
43	Properties of pus cells test as an indicator for positive culture in patients.	120

🕏 List of Figures

List of Figures

Fig. No.	Figure title	Page No.
1	Disorders of glycemia.	6
2	Comparison between diabetic patients and controls regarding ASB.	84
3	Comparison between diabetic patients with HbA1c below and above 7.5% regarding ASB.	87
4	Comparison between diabetic patients and controls as regards distribution of different cultured organisms.	93
5	Comparison between diabetic patients and controls with ASB as regards sensitivity of different cultured organisms.	95
6	Distribution of different cultured organisms among diabetic patients with HbA1c below and above 7.5% with positive culture.	101
7	Comparison between diabetic patients with HbA1c below and above 7.5% as regards sensitivity of different cultured organisms.	104
8	Comparison between pre and post pubertal diabetic females regarding ASB.	111
9	Distribution of different cultured organisms among pre and post pubertal female diabetic patients with positive culture.	113
10	Sensitivity of different cultured organisms among pre and post pubertal female diabetic patients.	116
11	ROC curve showing that pyuria had 100% sensitivity & specificity to predict +ve cultures in controls.	118
12	ROC curve showing that pyuria had 80% sensitivity & specificity to predict +ve cultures in patients.	120

🕏 List of Figures

Acknowledgment

I would like to express my sincere and deep gratitude to our eminent Professor Dr. Mona Salem, Prof. of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind help, cooperation, encouragement and valuable support. It is a very great honor to work under her guidance and supervision.

Also, I am very grateful to Assistant Professor Dr. Randa Matter, ass. Prof. of Pediatrics, Faculty of Medicine, Ain Shams University, for her experienced guidance, valuable help, and continuous encouragement. I want to express my obligation and gratitude for her supervision.

Also, I am very grateful to Dr. Abeer Abdel-Maksoud, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her experienced guidance and great help she gave to me and endless support during this work.

Also, I am very grateful to Dr. Sherine El-Masry, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her effort in supervising the laboratory work of this study.

Many thanks are extended to diabetic patients and all staff of Diabetes Clinic, Children Hospital in Faculty of Medicine, Ain Shams University.

Introduction

Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia. It is caused by deficiency of insulin secretion or insulin action or both and results in abnormal metabolism of carbohydrate, protein and fat. It is most common endocrine-metabolic disorder of childhood and adolescence with important consequences for physical and emotional development (Mark, 2000).

Asymptomatic bacteriuria (ASB) was defined as the presence of $> 10^5$ colony-forming units/mL of one or two of the same microorganisms in a culture of clean-voided midstream urine from a patient without symptoms of urinary tract infection (UTI) (Geerlings et al., 2001).

Asymptomatic bacteriuria is common. Populations with structural or functional abnormalities of the genitourinary tract may have an exceedingly high prevalence of bacteriuria, but even healthy individuals frequently have positive urine cultures (*Nicolle*, 2003).

The prevalence of significant bacteriuria (S.B) in diabetes mellitus has not been clearly established (Mattcucci et al., 2007).

Introduction

Rozsai et al., (2003) reported that the prevalence of ASB and leukocyturia was higher in diabetic children and young adults than in control subjects and that the spectrum of bacteria in patients with ASB was different from the usual spectrum in patients with UTI.

Aim of the work

The aim of the work was:

- To investigate the prevalence of asymptomatic urinary tract infection among patients with types I diabetes mellitus.
- To identify the type and antibacterial sensitivity patterns of the organisms causing these UTIs.
- To study the correlation between ASB and both the presence of microalbuminuria and the degree of glycemic control.

Diabetes Mellitus

Definition

Diabetes mellitus (DM) is a clinical syndrome of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion (absolute or relative), insulin action or both. Lack of insulin affects the metabolism of carbohydrate, protein, fat, and causes significant disturbance of water and electrolyte homeostasis (*ISPAD*, 2007).

The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of various organs. The long-term effects include progressive development of specific complications such as, retinopathy with potential blindness, nephropathy that may lead to renal failure, and/or neuropathy (*American Diabetes Association*, 2005).

Several pathogenetic processes are involved in the development of diabetes. These processes destroy the beta cells of the pancreas with consequent insulin deficiency, and others that result in resistance to insulin action. The abnormalities of carbohydrate, fat and protein metabolism are due to deficient action of insulin on target tissues resulting from insensitivity or lack of insulin. The etiology and pathophysiology leading to the hyperglycemia, however, are markedly different among patients