Role Of CT And MR Imaging In The Evaluation Of Adrenal Masses

Essay
Submitted for partial fulfillment of Master degree in Radiodiagnosis

Submitted by
Mohamed Ahmed Abd Elbaset
(M. B. B. Ch)
Ain Shams University

Under supervision of

Prof. Safaa Kamal Mohammed

Professor of Radiodiagnosis
Faculty of medicine, Ain Shams University

Dr. Mennatallah Hatem Shalaby

Lecturer of Radiodiagnosis
Faculty of medicine, Ain Shams University
Faculty of medicine
Ain Shams University
2014

دور الاشعة المقطعية والرنين المغناطيسي في تقييم اورام الغدة الكظرية

رسالة توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمه من الطبیب/ محمد احمد عبدالباسط محمود بكالوریوس الطب و الجراحة جامعة عین شمس

تحت إشراف أ.د. صفاع كمال محمد

استاذ الأشعة التشخيصية كلية الطب جامعة عين شمس

د. منة الله حاتم شلبي مدرس الأشعة التشخيصية كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس 2014

Acknowledgement

FIRST AND FOREMOST, THANKS TO ALLAH

I would like to express my deepest gratitude and thanks to prof. Dr. Safaa Kamal Mohammed, professor of Diagnostic Radiology, Faculty of Medicine, Ain Shams University; for his continuous kind supervision; generous advices and endless ideas for this work to be achieved. Indeed, it has been a privilege for me to be under his sincere supervision.

I wish to express my deepest appreciation to **Dr. Mennatallah Hatem Shalaby,** Lecturer of Diagnostic Radiology, Faculty of Medicine, Ain Shams University; for her unlimited assistance, kind cooperation, valuable aid and keen supervision.

My appreciations is extended to my family and every person taught me a word in the field of Diagnostic Radiology; I am sure that this had its contribution in this work.

Mohamed Ahmed, 2014

Abstract

Finally, CT and MR remain the primary imaging modalities for characterization of adrenal lesions. Recently developed techniques may offer additional information. The value of other new functional imaging techniques has already been proven and such as diffusion weighted imaging and MR spectroscopy may play an important role in lesion characterization in the near future. These exciting techniques may soon to be routinely available and could potentially further obviate the need for adrenal biopsies that are performed in indeterminate cases.

Key word

characterization, CT, MR,

Contents

Chapter No.	Subject	Page No.
	Acknowledgement List of abbreviation. List of tables.	I IV
	List of figures	v
1-	Introduction. Aim of the work.	
2-	Review of literature:	
	· Anatomy of the adrenal gland.	
	 Radiological anatomy of the adrenal gland. 	9
	· Pathology of the adrenal gland.	14
	 Radiological evaluation of adrenal masses. 	43
	 New imaging techniques of the adrenal gland 	108
	· Case presentation	139

3-	Summary and Conclusion.	150
5-	References.	153
6-	Arabic Summary.	

List Of Abbreviations

AA	Adrenocortical adenoma
ACC	Adrenocortical carcinomas
ACTH	Adrenocortical Trophic hormone
ADP	Adenosine Di Phosphate
AIMAH	ACTH-independent macronodular adrenal hyperplasia
APA	Aldosterone-Producing Adenomas
APW	absolute percentage wash out
САН	congenital adrenal hyperplasia
CMV	Cytomegalovirus
CNS	central nervous system
CRH	Corticotropin- Releasing Hormone
CSI	Chemical Shift Imaging
СТ	Computed Tomography
DA	attenuation on delayed contrast-enhanced scans
DIC	Disseminated intravascular coagulation
DWI	Difusion-weighted imaging
EA	Early attenuation on contrast-enhanced scans

Fig.	Figure
FOV	Field of View
FS	Fat Suppression
FSE	Fast Spin Echo
g	Grams
Gd	Gadolinium
GIP	Gastric Inhibitory Polypeptide
GN	ganglioneuroma
GNB	Ganglioneuroblastoma
GRA	Glucocoticoid Remediable Aldosteronism
GRE	Gradient Recalled Echo
HASTE	Half fourier Acquisition Single shot Turbo spin Echo
Hrs	Hours
HU	Hounsfield unit
HVA	Homo Vanillic Acid
IHA	Idiopathic Hyperplasia
INSS	International Neuroblastoma Staging System
IV	Intravenous
IVC	Inferior Vena Cava
LDL	Low-Density Lipoprotein

MDCT	Multidetector Computed Tomography
MEN	Multiple Endocrine Neoplasm
Min.	Minutes
MIP	Maximum Intensity Projection
MRI	Magnetic Resonance Imaging
MRS	Magnetic Resonance Spectroscopy
MSH	Melanocyte Stimulating Hormone
NB	Neuroblastoma
NECT	Non Enhanced CT
NF-1	Neurofibromatosis 1
PA/PRA	Plasma Aldosterone/ Plasma Renin Activity Ratio
PNET	Primitive Neuroectodermal Tumor
POG	Pediatric Oncology Group
RCC	renal cell carcinoma
PRA	Plasma Renin Activity
ROI	Region of Interest
RPW	Relative percentage washout
SE	Spin Echo
Sec.	Seconds

SI	Signal Intensity
StAR	Steroidogenic Acute Regulatory Protein
STIR	Short TI Inversion Recovery
Т	Tesla
TE	Time of Echo
TR	Time of Repetition
TS	Tuberous Sclerosis
VHL	Von Hippel-Lindau disease
VMA	Vanillyl Mandelic Acid
WHO	World Health Organization
WI	Weighted Image

LIST OF TABLES

Table No.	Title	
Table 1	Detailed adrenal anatomic relationships	
Table 2	International Neuroblastoma Pathology Committee (INPC) classification of neuroblastic tumors (NT)	
Table 3	Percentage washout formulas for 15-minute delayed contrast- enhanced CT scans	
Table 4	Clinical evaluation of adrenal incidentaloma	
Table 5	Hormonal evaluation for adrenal incidentaloma	
Table 6	The median signal intensity (SI) indices, fractional anistrophy (FA) values and apparent diffusion coefficients (ADC) of adrenal adenomas and metastasis	
Table 7	Examples of metabolites (and their frequencies) that are observable at 1H MR spectroscopy	

List Of Figures

Fig. No.	Title
1	Normal relationship of adrenals to kidneys (autopsy specimen)
2	Drawing shows cross sectional anatomy of the adrenal gland
3	Coronal CT scan demonstrating normal right and left adrenal glands
4	Schematic representation of the blood supply of the adrenal glands.
5	Normal appearance of the right adrenal gland on CT.
6	Most frequent shape of adrenal glands
7	Normal appearance of the right adrenal gland on MRI
8	Gross appearance of adrenal cortical adenoma
9	Pathogenetic pathways of Cushing's syndrome
10	The major causes of 1ry hyperaldosteronism
11	Left: Gross appearance of adrenal cortical carcinoma.
12	Potential sites of pheochromocytoma
13	Gross photograph of Pheochromocytoma

14	Infant with massive abdominal distension
15	Adrenal pseudotumor.
16	Abdominal CT showing bilateral smooth adrenal hyperplasia.
17	Transverse contrast-enhanced CT scan shows the medial limbs
18	MRI showing bilateral adrenal nodular hyperplasia.
19	Axial unenhanced CT scan shows 2.4-cm mass with attenuation of 3 HU
20	Axial unenhanced CT scan shows 1.8-cm right adrenal mass
21	Dynamic and delayed contrast-enhanced CT scans demonstrate a homogeneously enhancing mass in the right adrenal gland
22	Axial CT scans of 1.9-cm lipid-poor right adrenal adenoma.
23	MRI obtained with in-phase (left) and out-of-phase (right) imaging after CT imaging
24	An adrenal adenoma (arrows) is diagnosed with follow-up MRI
25	MRI images demonstrate a homogeneous ovoid mass in the right adrenal gland
26	Calcification on a right adrenal adenoma.
27	Cushing's syndrome due to a cortical adenoma.
28	Cushing's syndrome due to a cortical adenoma.
29	Adrenal carcinoma
30	Axial CT scans in 31-year-old woman with 11.8-cm right adrenal carcinoma

31	Adrenal carcinoma associated with Cushing's syndrome
32	Axial gadolinium-enhanced T1-weighted three-dimensional gradient-echo MR
33	'Typical' CT findings in pheochromocytoma
34	Enhanced CT, Large right adrenal pheochromocytoma
35	Metastatic pheochromocytoma.
36	A 56 year old woman who had incidental right adrenal lesion
37	Top left: ovoid homogenous right adrenal pheochromocytoma (14 HU) on NECT
38	Left adrenal pheochromocytoma in 67-year-old woman
39	Neuroblastoma and renal invasion
40	Coronal unenhanced T1-weighted MR image (top left) and axial T2-weighted MR image
41	Axial CT scans of right adrenal metastasis in 71-year-old man with lung cancer
42	Axial MR images of 4-cm left adrenal metastasis in 75-year-old woman with lung cancer
43	Myelolipoma in 46-year-old woman
44	Lymphoma in 28-year-old woman