

EXPERIMENTAL BEHAVIOR OF FLEXURAL STRENGTHENING OF PRELOADED REINFORCED CONCRETE CONTINUOUS BEAMS

By

AMIRA ADEL ABDEL HAMED RADWAN

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

EXPERIMENTAL BEHAVIOR OF FLEXURAL STRENGTHENING OF PRELOADED REINFORCED CONCRETE CONTINUOUS BEAMS

By
AMIRA ADEL ABDEL HAMED RADWAN

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. HAMED MAHMOUD Dr. KHALED FAROUK OMAR SALEM HADHOUD EI-KASHIF

Professor of Concrete Structures Structural Engineering Department Faculty of Engineering, Cairo University Assistant Professor Structural Engineering Department Faculty of Engineering, Cairo University

.....

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

EXPERIMENTAL BEHAVIOR OF FLEXURAL STRENGTHENING OF PRELOADED REINFORCED CONCRETE CONTINUOUS BEAMS

By AMIRA ADEL ABDEL HAMED RADWAN

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

STRUCTURAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Hamed Mahmoud Salem Hadhoud (Main Advisor)

Professor of Concrete Structures Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Talat Mostafa (Internal Examiner)

Professor of Concrete Structures Faculty of Engineering, Cairo University

Prof. Dr. Omar Ali Mousa El-Nawawy (External Examiner)

Professor of Concrete Structures
Faculty of Engineering, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Amira Adel Abdel Hamed Radwan

Date of Birth: 10/04/1991 **Nationality:** Egyptian

E-mail: amiraadel_91@yahoo.com

Phone: (+20) 1289192904

Address: 26 Momtaz st. off Ubada Ibn Elsamit st.,

Giza, Egypt

Registration Date: 01/03/2014 **Awarding Date:**/..../

Degree: Master of Science **Department:** Structural Engineering

Supervisors:

Prof. Dr. Hamed Mahmoud Salem

Dr. Khaled Farouk Omar

Examiners:

Prof. Dr. Hamed Mahmoud Salem (Main Advisor)
Prof. Dr. Mohamed Talat Mostafa (Internal Examiner)
Prof. Dr. Omar Ali Mousa (External Examiner)
- Professor of Concrete Structures, Faculty of Engineering, Ain Shams

University.

Title of Thesis:

"Experimental Behavior of Flexural Strengthening of Preloaded Reinforced Concrete Continuous Beams"

Key Words:

Flexural Strengthening, Preloaded RC Continuous Beams, RC Layers, CFRP Sheets.

Summary:

The thesis presents an experimental investigation of the flexural strengthening of preloaded reinforced concrete continuous beams. Two types of strengthening were used; strengthening with RC layers and strengthening with CFRP sheets. Parameters which were studied were the preloading level and the type of strengthening. The results demonstrated that decreasing the preloading level in case of strengthening with RC layers has an essential role in increasing the flexural load-carrying capacity and the deflection of RC continuous beams, while in case of strengthening with CFRP sheets it doesn't influence the flexural load-carrying capacity and the deflection of RC continuous beams. In addition, strengthening by extremely cheap and traditional materials like RC layers resulted in an increase in the load-carrying capacity plus high deflections conservation. While strengthening with CFRP was not an effective strengthening technique due to its high cost, low deflections and the sudden failure resulted.

ACKNOWLEDGMENT

I would like to express my gratitude to my grandmother, my father, my sister, my brother, my cousins, my friends, and especially my mother who always supports me and stands beside me in every step in my life.

I would like to gratefully acknowledge the significant assistance and guidance of my advisors during my work on this thesis. I would also like to thank all the people who have helped me in any way to accomplish my thesis.

DEDICATION

Dedicated to my parents, my sister and my brother with love

TABLE OF CONTENTS

ACKNOWLEDGMENT	i
DEDICATION	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
NOMENCLATURE	X
ABSTRACT	xi
CHAPTER 1: INTRODUCTION	16
1.1 Introduction	16
1.2 Objective	16
1.3 Thesis Outline	16
CHAPTER 2 : LITERATURE REVIEW	18
2.1 Introduction.	18
2.2 Effect of Preloading Level on Strengthened RC Beams	18
2.3 Techniques Used to Strengthen RC Beams	22
2.3.1 Reinforced Concrete Layers and Jackets	22
2.3.2 Fiber Reinforced Polymer	25
2.3.2.1 FRP Composite Materials	25
2.3.2.2 Glass, Carbon and Aramid Fibers	27
2.3.2.3 Carbon Fiber Reinforced Polymer	27
2.3.2.4 Near Surface Mounted FRP	32
2.3.3 RC Layers/Jackets and CFRP	32
2.4 Bond Strength between Two Concrete Layers	33
CHAPTER 3 : EXPERIMENTAL PROGRAM	34
3.1 Introduction	34
3.2 Material Properties	34
3.2.1 Coarse Aggregate	34
3.2.2 Fine Aggregate	35
3.2.3 Water	35
3.2.4 Cement	35
3.2.5 Reinforcement Steel	36

3.2.6 KEMAPOXY 165	36
3.2.7 Carbon Fiber Reinforced Polymer	37
3.2.8 Epoxy	38
3.2.9 Concrete Mix Design	39
3.2.10 Concrete Mixing, Placing & Curing	40
3.3 Specimens	42
3.4 Test Setup	46
3.5 Preparation for Testing	46
3.6 Instrumentation	59
3.6.1 Loads	59
3.6.2 Deflection	60
3.6.3 Reinforcement Strain	61
3.6.4 Cracks	62
CHAPTER 4 : EXPERIMENTAL RESULTS	63
4.1 Introduction	63
4.2 Specimens	63
4.2.1 Modes of Failure	65
4.3 Experimental Results	65
4.3.1 Experimental Results for Beam (B1)	65
4.3.1.1 Before Strengthening	65
4.3.1.2 After Strengthening	68
4.3.2 Experimental Results for Beam (B2)	71
4.3.2.1 Before Strengthening	71
4.3.2.2 After Strengthening	72
4.3.3 Experimental Results for Beam (B3)	74
4.3.3.1 Before Strengthening	75
4.3.3.2 After Strengthening	76
4.3.4 Experimental Results for Beam (B4)	79
4.3.4.1 Before Strengthening	79
4.3.4.2 After Strengthening	81
4.3.5 Experimental Results for Beam (B5)	83
4.3.5.1 Before Strengthening	84
4.3.5.2 After Strengthening	85

CHAPTER 5: EXPERIMENTAL ANALYSIS AND DISCUSSION	89
5.1 Introduction	89
5.2 Effect of Preloading Level	89
5.2.1 Differences between B1, B2 & B3	90
5.2.1.1 Before Strengthening	90
5.2.1.2 After Strengthening	92
5.2.2 Differences between B4 & B5	96
5.2.2.1 Before Strengthening	96
5.2.2.2 After Strengthening	98
5.3 Effect of Type of Strengthening	101
5.3.1Strengthening with RC Layers	103
5.3.2Strengthening with CFRP Sheets	105
5.3.3Comparing the Methods of Strengthening	106
5.4 Strengthening Materials Cost Influence	111
5.4.1 Strengthening with RC Layers	111
5.4.2 Strengthening with CFRP Sheets	111
5.4.3 Comparing the Methods of Strengthening	112
CHAPTER 6 : CONCLUSION AND RECOMMENDATION	114
6.1 Summary	114
6.2 Conclusion	114
6.3 Recommendation	115
CHAPTER 7: REFERENCES	116
الملخص	

LIST OF TABLES

Table 2-1: Failure Modes of the Twelve Tested RC Beams	22
Table 2-2: Mechanical Properties of Different Fiber Types	26
Table 2-3: Properties of Matrix Materials	26
Table 2-4: Description & Failure Modes of the Tested RC Beams	30
Table 3-1: Mechanical Properties of Steel Bars	36
Table 3-2: Technical Properties of KEMAPOXY 165 (at 25° C)	37
Table 3-3: Mechanical & Physical Characteristics of CFRP Sheets	
Table 3-4: Weights Desired to Cast One Cubic Meter of Concrete	39
Table 3-5: Dimensions & Reinforcement Details of Specimens	43
Table 5-1: Type of Strengthening & Preloading Level of the Tested Beams	89
Table 5-2: Comparison between B1, B2 & B3	90
Table 5-3: Failure Modes of B1, B2 & B3	92
Table 5-4: Comparison between B1, B2 & B3 after Strengthening	94
Table 5-5: Comparison between B4 & B5	96
Table 5-6: Comparison between Beams B4 and B5 after Strengthening	99
Table 5-7: Comparison between the Five Beams before and after Strengthening	101
Table 5-8: The Results of the Three Beams (B1, B2 & B3) after Strengthening	
compared to CB1	103
Table 5-9: The Results of the Two Beams (B4& B5) after Strengthening compared	to
CB4	105
Table 5-10: Comparison between Beam (1) and Beam (4)	107
Table 5-11: Material Cost for Strengthening of One Beam with RC Layers	111
Table 5-12: Material Cost for Strengthening of One Beam with CFRP Sheets	111
Table 5-13: Shows the Percentage of Increased Capacity and the Cost of Strengthe	ning
of each Beam	112

LIST OF FIGURES

Figure 2-1: Strain-Stress Behavior for Different Fiber Types, Ordinary Steel Bar an	ıd
Steel Tendon	26
Figure 2-2: Strain & Stress across the depth of RC beam strengthened with FRP	
laminate	28
Figure 2-3: Typical Wrapping Scheme-CFRP at Bottom & Extended on Sides	30
Figure 2-4: Typical Wrapping Scheme-CFRP at Bottom & Extended on Sides with	End
Anchorages	31
Figure 3-1: Coarse Aggregate utilized in the Mix	34
Figure 3-2: Fine Aggregate utilized in the Mix	35
Figure 3-3: BVF Admixture utilized in the Mix	
Figure 3-4: The Two Components (A&B) of KEMAPOXY 165	36
Figure 3-5: The Two Components (A&B) of Sikadur®-30	39
Figure 3-6: Casting of RC Beams	40
Figure 3-7: Cubes Preparation and Testing	42
Figure 3-8: Specimens Details before & after Strengthening	45
Figure 3-9: The Reinforcement of the Original Beams	46
Figure 3-10: Shows the beam after painting and putting the base plates	47
Figure 3-11: Shows the beam after connecting the strain gauges & LVDTs	48
Figure 3-12: Beams 1, 2, & 3 after Removing the Outer Clearance	49
Figure 3-13: U-Shaped Stirrups	49
Figure 3-14: Perforation, Cleaning and Casting Holes	50
Figure 3-15: Beam 1, 2 & 3 after planting the U-Shaped Stirrups	52
Figure 3-16: Casting the Concrete Layer	52
Figure 3-17: Surface Smoothening Using the Grinder Machine	53
Figure 3-18: Cutting CFRP Sheet	54
Figure 3-19: Epoxy's Components after Mixing	55
Figure 3-20: Application of CFRP on the Top Surfaces	57
Figure 3-21: Marking the places of the Base Plates on the Bottom Surfaces	58
Figure 3-22: Bottom surface of RC beams after applying CFRP Sheets	59
Figure 3-23: Loads acting on the Tested Beams	59
Figure 3-24: Test Arrangement for Tested Beams	60
Figure 3-25: LVDTs Used to Measure the Deflection	60
Figure 3-26: Electrical Resistance Strain Gauges for the Five Beams before	
Strengthening	
Figure 3-27: Electrical Resistance Strain Gauges for B1, B2 & B3 after Strengthenia	ing
	62
Figure 4-1: Loads acting on the Tested Beams	
Figure 4-2: LVDTs used to measure the Deflection	
Figure 4-3: Electrical Resistance Strain Gauges for B1, B2 & B3	
Figure 4-4: Electrical Resistance Strain Gauges for B4 & B5	64

Figure 4-5: Crack Propagation and Mode of Failure of Beam (B1)	66
Figure 4-6: Load – Deflection Relation for Beam (B1)	67
Figure 4-7: Steel-Strain Distribution along Beam (B1)	
Figure 4-8: Crack Propagation and Mode of Failure of Beam (B1) after Strengthenin	
with RC Layers	69
Figure 4-9: Load – Deflection Relation for Beam (B1) after Strengthening with RC	
Layers	69
Figure 4-10: Steel-Strain Distribution along Beam (B1) after Strengthening with RC	7
Layers	70
Figure 4-11: Crack Propagation of Beam (B2)	71
Figure 4-12: Load – Deflection Relation for Beam (B2)	72
Figure 4-13: Crack Propagation and Mode of Failure of Beam (B2) after Strengthen	
with RC Layers	73
Figure 4-14: Load – Deflection Relation for Beam (B2) after Strengthening with RC	7
Layers	73
Figure 4-15: Steel-Strain Distribution along Beam (B2) after Strengthening with RC	7
Layers	74
Figure 4-16: Crack Propagation of Beam (B3)	75
Figure 4-17: Load – Deflection Relation for Beam (B3)	75
Figure 4-18: Crack Propagation and Mode of Failure of Beam (B3) after Strengthen	ing
with RC Layers	76
Figure 4-19: Load – Deflection Relation for Beam (B3) after Strengthening with RC	7
Layers	77
Figure 4-20: Steel-Strain Distribution along Beam (B3) after Strengthening with RC	7
Layers	78
Figure 4-21: Crack Propagation and Mode of Failure of Beam (B4)	80
Figure 4-22: Load – Deflection Relation for Beam (B4)	81
Figure 4-23: Crack Propagation & Mode of Failure of Beam (B4) after Strengthenir	ıg
with CFRP Sheets	82
Figure 4-24: Load – Deflection Relation for Beam (B4) after Strengthening with CF	⁷ RP
Sheets	
Figure 4-25: Crack Propagation of the Beam (B5)	84
Figure 4-26: Load – Deflection Relation for Beam (B5)	84
Figure 4-27: Crack Propagation and Mode of Failure of Beam (B5) after Strengthen	ing
with CFRP Sheets	86
Figure 4-28: Load – Deflection Relation for Beam (B5) after Strengthening with CF	₹RP
Sheets	87
Figure 4-29: Steel-Strain Distribution along Beam (B5) after Strengthening with CF	RP
Sheets	88
Figure 5-1: The Load-Deflection Behavior of B1, B2 & B3	91
Figure 5-2: Cracking and Maximum Loads for B1, B2 & B3	91
Figure 5-3: Failure Modes of B1, B2&B3 after Strengthening with RC Layers	93
Figure 5-4: The Load-Deflection Behavior of B1, B2, & B3 after Strengthening	94
Figure 5-5: Cracking, Yield and Ultimate Loads for B1, B2 & B3	95

Figure 5-6: Deflections at Ultimate Load for B1, B2 & B3	.95
Figure 5-7: The Load-Deflection Behavior of Beams B4 and B5	.97
Figure 5-8: Cracking and Maximum Loads for Beams B4 and B5	
Figure 5-9: CFRP De-Bonding Failure in Beams B4 & B5	.98
Figure 5-10: The Load-Deflection Behavior of B4 & B5 after Strengthening	.99
Figure 5-11: Cracking and Ultimate Loads for B4 & B5	100
Figure 5-12: Deflections at Ultimate Load for B4 & B5	100
Figure 5-13: Cracking and Maximum Loads for the Five Beams before Strengthening	3
	102
Figure 5-14: Cracking and Ultimate Loads for the Five Beams after Strengthening1	102
Figure 5-15: Deflections at Ultimate Load for the Five Beams after Strengthening1	103
Figure 5-16: Load-Deflection Curves for the Three Beams (B1, B2 & B3) after	
Strengthening compared to CB1	104
Figure 5-17: Load-Deflection Curves for the Two Beams (B4 & B5) after	
Strengthening compared to CB4	105
Figure 5-18: Ultimate loads for (B1) & (B4) before & after strengthening1	107
Figure 5-19: Deflections at Ultimate load for B1 & B4 before & after strengthening 1	107
Figure 5-20: Load-Deflection Curves for Beams B1 and B4 before and after	
Strengthening1	108
Figure 5-21: Normalized Load-Deflection Curve for the Five Beams after	
Strengthening1	110
Figure 5-22: Load Capacity versus Cost of Strengthening	112
Figure 5-23: Shows the Capacity Increased per Unit Cost for each Beam1	

NOMENCLATURE

AFRP: Aramid Fibre Reinforced Polymer

A_p: Area of FRP laminate

As: Area of tension steel reinforcement

b: Width of Beam

CB: Control Beam

CFRP: Carbon Fibre Reinforced Polymer

d: Distance from extreme compression fiber to centroid of tension reinforcement

E_n: Modulus of Elasticity of the FRP laminate

f_p: Tensile stress in the FRP laminate

f_{pu}: Ultimate tensile stress in the FRP laminate

FRP: Fibre Reinforced Polymer

fy: Yield stress of steel reinforcement

GFRP: Glass Fibre Reinforced Polymer

h: Depth of Beam

LVDT: Linear Voltage Differential Transducers

M_n: Nominal moment capacity corresponding to either crushing of concrete in compression or tension failure of the reinforcing steel in the tension zone of the beam after yielding.

M_u: Ultimate bending moment

M_v: Yield bending moment

NSM: Near Surface Mounted

P: Applied load

P_{cr.}: Cracking load

P_{max.}: Maximum load

P_u: Load capacity of beam (ultimate load)

P_v: Yielding load

RC: Reinforced Concrete

t: Thickness of FRP laminate

t_{max}: Maximum thickness of FRP laminate

t_{min}: Minimum thickness of FRP laminate

UHPFRC: Ultra High Performance Fibre Reinforced Concrete

 β_1 : Ratio of the rectangular compression block to the depth of neutral axis

Ep: Strain in the FRP laminate, corresponding to fp

 Δ_{max} : Mid-span deflection corresponding to the maximum load

 $\Delta_{\text{ult.}}$: Mid-span deflection corresponding to the ultimate load

ABSTRACT

Nowadays, there is a considerable concentration among researchers and engineers with the strengthening of the existing structures which became no longer safe. Structures became no longer safe due to the increased load specifications in the design codes in the recent years, overloading, and under-design of existing structures or the insufficiency of quality control. Therefore, further techniques for strengthening have been developed in order to improve the capacity of the standing structures and to fulfill specific serviceability requirements as well. The main idea of these techniques is to strengthen the major members of the standing structure, for example, beams, columns and beam-column joints, which will eventually strengthen the structure itself. All these structural members exposed to damage before strengthening, so experimental programs need to be performed on preloaded members to be reliable.

An experimental study had been executed to investigate the preloading effect on the flexural trend of reinforced concrete strengthened continuous beams. Five continuous RC beams were tested; they all had the same dimensions and the same reinforcement detailing. Two types of strengthening were used; strengthening by RC layers and strengthening by CFRP sheets. The five specimens were tested before and after applying the strengthening techniques, but under different damaging levels. For all specimens, deflections and reinforcement strains were registered throughout the test duration before and after strengthening.

The results demonstrated that decreasing the preloading level in case of strengthening with RC layers has an essential role in increasing the flexural load-carrying capacity and the deflection of RC continuous beams, where preloading the beam with preloading levels 90% and 70% increased the flexural load-carrying capacities than loading it up to failure (100%) before strengthening by 16.6% and 23.8%, respectively. Also, preloading level 70% increased the ultimate deflection by 14% than loading it up to failure before strengthening, while preloading level 90% made almost the same improvement in the ultimate deflection as preloading level 100%.

On the other side, decreasing the preloading level in case of strengthening with CFRP sheets doesn't influence the flexural load-carrying capacity and the deflection of RC continuous beams, where preloading the beam with a preloading level 90% gave almost the same ultimate deflection as preloading level 100%, while it increased the flexural load-carrying capacity than preloading level 100% but with a small percentage.

The results also compared between the two used strengthening techniques. It is clear from the results that strengthening with CFRP sheets improves strength, ductility and dissipated energy of RC continuous beams. However, it decreases the mid-span deflection at ultimate load and affects the mode of failure of RC continuous beams. On the other side, strengthening with RC layers improves strength, dissipated energy and deflection at ultimate load of RC continuous beams. Also, in case of getting rid of shear failure, strengthening with RC layers will not affect the predominant mode of failure and improve the ductility of RC continuous beams.