STUDIES ON SELF INCOMPATIBILITY PHENOMENON IN SOME MANGO CULTIVARS

By MAHMOUD FATHI MAHMOUD MAKLAD

B.Sc. Agric.Sc. (Horticulture), Ain Shams University, 1999 M.Sc. Agric.Sc. (Pomology), Ain Shams University, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

in Agricultural Science (Pomology)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

STUDIES ON SELF INCOMPATIBILITY PHENOMENON IN SOME MANGO CULTIVARS

Ву

MAHMOUD FATHI MAHMOUD MAKLAD

B.Sc. Agric.Sc. (Horticulture), Ain Shams University, 1999 M.Sc. Agric.Sc. (Pomology), Ain Shams University, 2005

This thesis for Ph.D. degree has been approved by:

Dr.	Ahmo	ed Abdel S	alan	n Mahmo	ud				
	Prof.	Emeritus	of	Genetics	, Facult	y of	Agricultu	re, Z	Zagazig
	Univ	versity							
Dr.	Asser	n Dessouk	i Sha	ltout					
	Prof.	Emeritus	of F	Pomology,	Faculty	of A	griculture,	Ain	Shams
	Univ	versity							
Dr.	Moha	amed Abde	el-Sa	lam Rash	ed				
	Prof.	Emeritus	of (Genetics,	Faculty	of A	griculture,	Ain	Shams
	Univ	versity							
Dr. Ibrahim Mohamed Dessoukey									
	Prof.	Emeritus	of F	Pomology,	Faculty	of A	griculture,	Ain	Shams
	Univ	versity							

Date of Examination: 18 / 7 / 2012

STUDIES ON SELF INCOMPATIBILITY PHENOMENON IN SOME MANGO CULTIVARS

MAHMOUD FATHI MAHMOUD MAKLAD

B.Sc. Agric.Sc. (Horticulture), Ain Shams University, 1999 M.Sc. Agric.Sc. (Pomology), Ain Shams University, 2005

Under the supervision of:

Dr. Ibrahim Mohamed Dessoukey

Prof. Emeritus of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Abdel-Salam Rashed

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University

Dr. Amr Mohamed Egeez

Researcher of protein and nucleic acid chemistry, Agricultural Genetic Engineering Research Institute, Agricultural Research Center

دراسات على ظاهرة عدم التوافق الذاتي في بعض أصناف المانجو

رسالة مقدمة من محمود فتحى محمود مقلد

بكالوريوس علوم زراعية (بساتين)، جامعة عين شمس، 1999 ماجستير في العلوم الزراعية (فاكهة)، جامعة عين شمس، 2005

للحصول على درجة دكتور فلسفة في العلوم الزراعية (فاكهة)

قسم البساتين كلية الزراعة جامعة عين شمس

ABSTRACT

Mahmoud Fathi Mahmoud Maklad: Studies on Self Incompatibility Phenomenon in Some Mango Cultivars. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2012.

Five mango cultivars (Alphonse, Ewais, Hindi khassa, Keitt and Zebda) were used in this study during two successive seasons i.e. 2009 and 2010 at the Horticulture Research Station in El-Kanater El-Kheireia Kalubia Governorate, Laboratory of Molecular Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt and Department of protein and nucleic acid chemistry, Agricultural Genetic Engineering Research Institute, ARC Giza, Egypt, were examined for their self and cross-compatibility. At the same time, the fluorescence microscope was used to determine the growth of pollen tube in the style tissue after pollination. RAPD-PCR (polymerase chain reaction randomly amplified polymorphic DNA) analysis was performed to assess the genetic variation in cross-compatibility between them.

The obtained results showed that, Hindi khassa cv. was the earliest in beginning of blooming date while, Keitt and Zebda cv.s. were the latest in blooming date in the two seasons of study. Zebda cv. had the least length of panicle (13.00 to 13.10 cm) compared to the other four cultivars. The highest sex ratio (more perfect flowers) was found in Keitt cv. followed by the other cultivars under study in the two seasons. Microscopic examination for Alphonse, Ewais and Hindi khassa cultivars after self pollination revealed various degrees of self incompatibility characteristics in most of selfing pollen tubes such as short tubes which were unable to penetrate the style. Additionally, many deposits of calluses were appeared at a long of the pollen tubes after self pollination. The germination of Keitt and Zebda pollen grains on Hindi khassa and Keitt stigmatic surface, respectively were higher than other combinations and such pollen tubes reached to the base of the style in 4 days after

pollination, this is an indication of high cross compatible between each two cultivars. Moreover, the percentage of pistils with pollen tubes reaching stylar base was the highest when Keitt cultivar was used as a pollinizer to Zebda (19.04 %) and was (16.66 %) when Alphonse was used as a pollinizer for Keitt, while, Ewais gave the lowest percentage of pistils with pollen tubes reaching the base of the style 7 days after self pollination. In general, selfing of either cultivar induced lower number of pollen tubes at style bases compared to crossing to other cultivars. The highest initial number of fruits per panicle was observed when Keitt cv. was crossed by Zebda pollen grains meanwhile the lowest initial number of fruits per panicle value was noticed when Ewais cv. was selfed i.e. open followed by cross pollination gave the highest initial number of fruits per panicle in all cultivars under study than after self pollination.

For PCR-RAPD analysis, 10 arbitrary (12-mer) and 12 arbitrary (10-mer) primers were used (Operon Technologies Inc., Alameda, CA). A total of 91 and 161 polymorphic bands were detected for 10 primers (12-mer) and 12 primers (10-mer) RAPD analysis, respectively.

Dendrogram tree generated across RAPD analysis demonstrated that the highest similarity was scored between Alphonse and Ewais (77.1 %), while the lowest was scored between Keitt and Hindi khassa cultivars (28.1 %)

Some RAPD markers may be linked to some flowering characteristics such as beginning of blooming (C11-1952), length of panicle (B3-270), sex ratio (C6-810) and compatibility characteristics such as best pollinizer for each cultivar i.e. (Primers A11-1589, A21-579, A9-2582, A0-3249 and A2-1264)

Key words: Mango – blooming date – sex ratio – compatibility – cross pollination – pollen tube growth – RAPD- PCR – DNA markers.

ACKNOWLEDGMENT

First of all, I would like to express my deepest thanks to "Allah"

Who gave me the power, knowledge and helped me to carry out and finish this work.

I would like to express my sincere gratitude to **Prof. Dr. Ibrahim Mohamed Dessoukey** Prof. Emeritus of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University for his supervision and providing the idea, valuable advice, encouragement and continuous support for thesis requirements, continuous help during the whole work and revision of this manuscript.

I am grateful to **Prof. Dr. Mohamed Abdel-Salam Rashed** Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University for providing all facilities to carry out this work, his supervision, useful suggestions, encouragement and his continuous help during the preparation of this manuscript.

I am grateful to **Dr. Amr Mohamed Egeez** Dr. of Department of protein and nucleic acid chemistry, agent of Agricultural Genetic Engineering Research Institute, Agricultural Research Center for his supervision and sincere help during the accomplishment and preparation of this manuscript.

CONTENTS

		Page
	LIST OF TABLES	
	LIST OF FIGURES	
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
2.1.	Horticultural studies	3
2.1.1.	Time of Flowering	3
2.1.2.	Panicle charactarestics	6
2.1.3	Sex ratio	7
2.1.4.	Viability of pollen grains	16
2.1.5.	Emasculation of flowers	21
2.1.6.	Fluorescence – microscopic examination	22
2.1.7.	Compatibility and or incompatibility of some mango	
	cultivars	23
2.1.8.	Fruit set	29
2.2.	Biochemical Genetics studies	35
2.2.1.	Use of RAPD analysis in cultivar identification	35
2.2.2.	Use of RAPD analysis to identification the self –	
	incompatibility phenomena	46
3.	MATERIALS AND METHODS	52
3.1.	Materials	52
3.2.	Methods	52
3.2.1.	Horticultural studies	52
3.2.1.1.	Flowering measurements	52
3.2.1.1.1.	Dates of flowering	52
3.2.1.1.2.	Length and diameter of panicle base	52
3.2.1.1.3.	Sex ratio	53
3.2.1.2.	Pollination studies	54
3.2.1.2.1.	Pollen germination	54
3.2.1.2.2.	The self and cross compatibility and /or incompatibility	

	between the studied mango cultivars	54
3.2.1.2.3.	Microscopic preparations	56
3.2.1.3.	Fruiting attributes	56
3.2.1.3.1.	Number of fruits per panicle	56
3.2.2.	Molecular genetics studies	57
3.2.2.1.	Randomly amplified polymorphic DNA (RAPD)	57
3.2.2.1.1.	DNA isolation procedure	57
	DNA Extraction using CTAB buffer	57
3.2.2.1.2.	Randomly amplified polymorphic DNA-PCR (RAPD-	
	PCR) procedure	58
3.2.2.2.	Polymerase chain reaction (PCR) conditions	59
3.2.2.3.	Gel preparation procedure	60
4.	RESULTS AND DISCUSSION	62
4.1.	Horticultural studies	62
4.1.1.	Flowering measurements	62
4.1.1.1.	Dates of blooming	62
4.1.1.2.	Length and diameter of panicle	63
4.1.1.3.	Flowers measurements per panicle and sex ratio	64
4.1.2.	Pollination studies	68
4.1.2.1.	Pollen germination	68
4.1.2.2.	Self and cross compatibility and / or incompatibility	
	between some mango cultivars	70
4.1.2.3.	Percentage of pistils with pollen tubes reaching the	
	base of the style	86
4.1.3.	Fruiting attributes	96
4.1.3.1.	Number of fruits per panicle	96
4.2.	Molecular genetics studies	99
4.2.1.	Identification based on DNA analysis	99
4.2.1.1.	Randomly amplified polymorphic DNA (RAPD)	
	analysis	99
4.2.1.1.1.	PCR based on 12 mer primers.	99
4.2.1.1.2.	PCR based on 10 mer primers.	114

4.2.2.	Molecular genetic markers related to some flowering	
	traits and compatibility	132
5.	SUMMARY AND CONCLUSION	135
6.	REFERENCES	141
7.	ARABIC SUMMARY	

LIST OF TABLES

NO.	•	rages
1.	Codes, sequences and G+C percentage of the 10 arbitrary 12-mer primers.	58
2.	Codes, sequences and G+C percentage of the 12 arbitrary 10-mer primers.	59
3.	Beginning of blooming date, Full bloom date, End of blooming date and Flowering duration (days) of Alphonse, Ewais, Hindi khassa, Keitt and Zebda mango cultivars in 2009 and 2010 seasons.	63
4.	Average length, diameter of panicle base (cm) and total number of branches per panicle of Alphonse, Ewais, Hindi khassa, Keitt and Zebda mango cultivars in 2009 season.	65
5.	Average length, diameter of panicle base (cm) and total number of branches per panicle of Alphonse, Ewais, Hindi khassa, Keitt and Zebda mango cultivars in 2010 season.	65
6.	Average number of total flowers, perfect flowers, pistil aborted flowers per panicle, percentage of perfect flowers and sex ratio of Alphonse, Ewais, Hindi khassa, Keitt and Zebda mango cultivars in 2009 and 2010 seasons.	67
7.	Percentage of pollen grain germination of Alphonse, Ewais, Hindi khassa, Keitt and Zebda mango cultivars in 2010 season.	69
8.	Percentage of pistils with pollen tubes reaching to the style base in Alphonse mango cultivar in 2009 and 2010 seasons.	87
9.	Percentage of pistils with pollen tubes reaching to the style base in Ewais mango cultivar in 2009 and 2010	89

	seasons.	
	Percentage of pistils with pollen tubes reaching to the	
10.	style base in Hindi khassa mango cultivar in 2009 and	91
	2010 seasons.	
	Percentage of pistils with pollen tubes reaching to the	
11.	style base in Keitt mango cultivar in 2009 and 2010	93
	seasons.	
	Percentage of pistils with pollen tubes reaching to the	
12.	style base in Zebda mango cultivar in 2009 and 2010	95
	seasons.	
	Number of fruits per panicle (after three weeks from	97
13.	self and cross pollinations) of Alphonse, Ewais, Hindi	
	khassa, Keitt and Zebda cultivars in 2010 season	
14.	DNA polymorphism using RAPD-PCR for the five	100
	mango cultivars amplified with primer A0.	
15.	DNA polymorphism using RAPD-PCR for the five	101
	mango cultivars amplified with primer A1.	
16.	DNA polymorphism using RAPD-PCR for the five	102
	mango cultivars amplified with primer A2.	
17.	DNA polymorphism using RAPD-PCR for the five	103
	mango cultivars amplified with primer A4.	
18.	DNA polymorphism using RAPD-PCR for the five	104
	mango cultivars amplified with primer A9.	
19.	DNA polymorphism using RAPD-PCR for the five	105
	mango cultivars amplified with primer A11.	
20.	DNA polymorphism using RAPD-PCR for the five	106
	mango cultivars amplified with primer A16.	
21.	DNA polymorphism using RAPD-PCR for the five	107
	mango cultivars amplified with primer A17.	
22.	DNA polymorphism using RAPD-PCR for the five	108
	mango cultivars amplified with primer A21.	400
23.	DNA polymorphism using RAPD-PCR for the five	109

	mango cultivars amplified with primer A23.	
	Number of amplified fragment and specific markers	
24.	of the five mango cultivars based on RAPD-PCR	111
	analysis using 10 primers	
25.	Similarity indices among the five mango cultivars	113
20.	based on RAPD-PCR using 10 primers	110
26.	DNA polymorphism using RAPD-PCR for the five	115
20.	mango cultivars amplified with primer B3	113
27.	DNA polymorphism using RAPD-PCR for the five	116
27.	mango cultivars amplified with primer B12	110
28.	DNA polymorphism using RAPD-PCR for the five	117
20.	mango cultivars amplified with primer C5	11,
29.	DNA polymorphism using RAPD-PCR for the five	118
- >•	mango cultivars amplified with primer C6	110
30.	DNA polymorphism using RAPD-PCR for the five	119
.	mango cultivars amplified with primer C11	11)
31.	DNA polymorphism using RAPD-PCR for the five	120
01.	mango cultivars amplified with primer C13	120
32.	DNA polymorphism using RAPD-PCR for the five	121
	mango cultivars amplified with primer A6	
33.	DNA polymorphism using RAPD-PCR for the five	123
	mango cultivars amplified with primer A14	
34.	DNA polymorphism using RAPD-PCR for the five	123
	mango cultivars amplified with primer C9	
35.	DNA polymorphism using RAPD-PCR for the five	124
	mango cultivars amplified with primer A16	
36.	DNA polymorphism using RAPD-PCR for the five	126
	mango cultivars amplified with primer B8	
37.	DNA polymorphism using RAPD-PCR for the five	127
	mango cultivars amplified with primer C3	
38.	Number of amplified fragments and specific markers	128
-0.	of the five mango cultivars based on RAPD-PCR	120

	analysis using 12 primers			
39.	Similarity indices among the five mango cultivars			
39.	based on RAPD-PCR using 12 primers	131		
40.	Performance of different mango cultivars against three			
70.	flowering characters.			
41.	Performance of different mango cultivars against five	134		
71.	best pollinizer for each cultivar (as a female parent)	137		

LIST OF FIGURES

No.		Pages
1.	Stages of inflorescence development in Mango	53
2.	The opening of Mango panicles in full bloom date (a) – the end of blooming date (b).	53
3.	Pollen tube of Alphonse mango cv. grew to about 1/3 the length of their own style after self pollination (A). Ewais pollen tubes had heavy deposition of callose	71
4.	along of the tubes in Alphonse style (B). Alphonse (♀) × Hindi khassa (♂) combination: (A) Pollen grains germinated on the stigma surface. (B) Pollen tubes grew to the first ⅓ of the Alphonse style. (C) Pollen tubes reached the base of Alphonse style 5 days after pollination.	71
5.	Keitt pollen grains on stigma surface of Alphonse (A). Keitt pollens germinated in the upper part of Alphonse style (B). Pollen tubes of Keitt reached to the base of Alphonse style 5 days after pollination (C).	72
6.	Zebda pollen tubes reached the end of the Alphonse style 6 days after pollination (A). Callose plugs were showed at along the tubes of Alphonse in Ewais style (B).	72
7.	Ewais cultivar as a female parent after self pollination: No germination of pollen grains on the stigma surface till 3 days from pollination (A). Pollen tubes grew slowly to the end of ½ the length of the own style (B,C). Plugs were present in selfing pollen tubes which delays its arrival to the base of style (D).	74