

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO – EGYPT

Electronics and Communications Engineering Department

Quality of Service (QoS) Support for Wi Fi Technology

A Thesis
Submitted in partial fulfillment for the requirements of the degree of Master of
Science in Electrical Engineering

Submitted by

Ahmed Mohamed Naguib El Sayed Omara

Electronics and Communications Eng. Dept. Faculty of Engineering - Ain Shams University

Supervised by

Prof. Dr. Salwa Hussein El Ramly

Professor – Electronics and Communications Department Faculty of Engineering – Ain Shams University

Associate Prof. Hussein Sherif Eissa

Researcher – Computers and Systems Department Electronics Research Institute

Associate Prof. Sherine Mohamed Abd El Kader

Researcher – Computers and Systems Department Electronics Research Institute

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO - EGYPT

Examiners Committee

Name: Ahmed Mohamed Naguib El Sayed Omara

Thesis: Quality of Service (QoS) Support for Wi Fi Technology		
Degree: Master of Science in Electrical Engineering (Electronics and Communications Engineering)		
Title, Name and Affiliation	Signature	
 Prof. Dr. Nagda Mohamed Helmy El Meniawy Electronics and Communications Eng. Dept. Faculty of Engineering - Ain Shams University 	(Member)	
2. Prof. Dr. Mohamed Saad El Sherif Head of Electronics Research Institute	(Member)	
 Prof. Dr. Salwa Hussein El Ramly Electronics and Communications Eng. Dept. Faculty of Engineering - Ain Shams University 	(Advisor)	
4. Associate Prof. Sherine Mohamed Abd El Kader Computers and Systems Department, Electronics Research Institute	(Advisor)	
	Date: / /	

Acknowledgments

All gratitude and praise to ALLAH first and last who helps me to complete this thesis.

I would like to thank Prof. Dr. Salwa El Ramly for giving me the chance to work under her supervision and for helping me in targeting this field and in this patience with me along the past years.

A special thanks and appreciation to Associate Prof. Dr. Hussein Sherif Eissa not only for his supervision, guidance, and suggestions during this work but also for his unlimited assistance and helpful comments.

I would like also to express my deepest gratitude to Accociate Prof. Dr. Sherine Mohamed Abd El Kader for her insightful remarks, valuable consultation and support, and full time co-operation she showed along the past years.

Sincere thanks are presented to all members of Computers and Systems Department of Electronics Research Institute for the unlimited supporting and valuable comments during preparing this thesis.

I would also like to thank my family and friends for their motivation, understanding, advice encouragement and their direct and indirect assistance.

Ahmed Mohamed Naguib El Sayed Omara

STATEMENT

This thesis is submitted to Ain-Shams University in partial fulfillment

of the degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author in the

department of electronics and communications engineering, Ain

Shams University.

No part of this thesis has been submitted for a degree or a

qualification at any other university or institute.

Name

: Ahmed Mohamed Naguib El Sayed Omara

Signature:

Date : / /

PAPER PUBLISHED FROM THESIS

A. N. Omara, Sherine M. Abd El-Kader, Hussein S. Eissa and S. El-Ramly, "A Prioritized Access Point Algorithm for 802.11b Networks in a Lossy Environment", Journal of Computing, Volume 2, Issue 5, pp. 53-65, May 2010.

Abstract

Ahmed Mohamed Naguib El-Sayed Omara, "Quality of Service (QoS) support for Wi Fi Technology", Master of Science dissertation, Ain Shams University, 2010

Key word: 802.11b, head of line blocking, quality of service, error-prone channels, binary exponential backoff, VoIP, mean opinion score.

The IEEE 802.11b is becoming more and more popular due to its low cost and easy installation, but unfortunately it does not support Quality of Service (QoS). Basically the MAC protocol of 802.11b treats all types of data traffic in the same way, on first come first served basis or FIFO discipline, regardless of the QoS requirements by the data traffic. The quality of service refers to the capability of a network to provide data transfer with good quality, and it is often measured in terms of the available bandwidth, delay in data transfer and data loss. The QoS requirements of the data traffic vary from application to application. Modern multimedia applications are very sensitive to the available bandwidth, and delay in data transfer, such as, video, audio streaming, Internet telephony and on line network games.

Many studies had been done over the 802.11b technology and proved that the FIFO cannot support the QoS. Beside the inability of the FIFO to prioritize one application traffic over another, it is also causing reduction in the overall performance of the centralized network if there are some transmission failures between the access point and the destination, and this problem is known by the head-of-line blocking problem.

This thesis provides a detailed simulation study using the OPNET simulator for the head-of-line blocking problem within the 802.11b networks. Also, this study tries to clarify some aspects for the problem such as its reasons, its effect

on the performance of the network, and its effect on the quality of some multimedia applications. Finally, this study provides a solution for the head of line blocking using an algorithm that prioritizes the transmissions of the access point which enables the AP to use the available bandwidth efficiently.

This thesis includes seven chapters. Chapter 1 is a quick introduction to the contents of the thesis. Chapter 2 presents the 802.11b technology in details. In Chapter 3, the voice challenges over the 802.11b networks as well as its capacity calculations over the same networks will be discussed in more details. Chapter 4 presents the issues that arise in the lossy environment and presents some efforts that had been done for enhancing the performance of the wireless networks in that environment. Chapter 5 presents our idea for alleviating the effect of the HOL blocking. Chapter 6 focuses on the simulation study and the results. Finally, Chapter 7 shows the final conclusions and introduces some future works.

Table of contents

	Page
Abstract	
Acknowledgements	III
Table of contents	
List of Figures	
List of Tables	
List of Symbols	
List of abbreviations	XIV
Chapter (1): Introduction	
1.1 Overview	. 1
1.2 Thesis Outline	
Chapter (2): IEEE 802.11b Standard	
2.1 Introduction	. 3
2.2 802.11b Architecture	
2.3 Radio Technology	
2.4 Medium Access Mechanisms	7
2.4.1 Distributed Coordination Function	
2.4.2 Binary Exponential Backoff	8
2.4.3 MAC Frame Format	
2.5 802.11b Theoretical Analysis	
2.5.1 DCF Data Efficient	
2.5.1.1 Basic Frame Exchange	
2.5.1.2 RTS-CTS Frame Exchange	
2.5.2 Theoretical Upper Bound Throughput	
2.5.2.1 Upper Bound Throughput for Ad-Hoc Networks	
2.5.2.2 Upper Bound Throughput for Infrastructure Networks	
2.6 Conclusions	. 17
Chapter (3): Voice over 802.11b	
3.1 Voice Requirements	. 18
3.2 Voice Challenges over 802.11b	. 19
3.3 Voice Capacity in 802.11b	. 21
3.4 Voice Quality Measurements	. 24
3.5 Conclusions	
Chapter (4): Issues of 802.11b in the Lossy Environment	
4.1 Introduction	. 27
4.2 Issues in the Lossy Environments	
4.2.1 The Performance Anomaly in 802.11b	
4.2.2 Channel Capture in 802.11b	
	50

	4.2.3 Head-of-Line Blocking in 802.11b
4.3	Literature Review
	4.3.1 Channel State – Dependent Packet Scheduling (CSDPS)
	4.3.2 CSDPS + Class Based Queuing (CBQ)
	4.3.3 Adaptive Round Robin Scheduler
	4.3.4 Adaptive Channel-State-Based Scheduling for Multicast RTS
4.4	Conclusions
Ch	apter (5): A Prioritized Access Point in a Lossy Environment
	Introduction
5.2	A Modified MAC for the AP in a Lossy Environment
	5.2.1 The Channel Status Monitor
	5.2.2 Prioritized Access Point Algorithm
	5.2.2.1 1.X Exponential Backoff Algorithm
	5.2.2.2 Blocked Data Algorithm
Ch	apter (6): Simulation and Results
	Introduction
	Simulations' Scenarios
	Simulations' Results
0.5	6.3.1 Performance of 802.11b in Lossless Environment
	6.3.2 Performance of 802.11b in Lossy Environment
	6.3.2.1 Results of G.711 Encoder
	6.3.2.1.1 High Load Scenarios for G.711
	6.3.2.1.2 Medium Load Scenarios for G.711
	6.3.2.2 Results of G.726 Encoder
	6.3.2.2.1 High Load Scenarios for G.726
	6.3.2.2.2 Medium Load Scenarios for G.726
6.1	Summary of PAP Results
	S
	6.4.1 Impact of Voice Encoder
	6.4.2 Impact of Framing Interval
	6.4.4 Failed Sessions Capacity for Maintaining the Voice Quality
Ch	apter (7): Conclusions
7.1	Summary
	Conclusions
	Future Works

REFERENCES	114
Appendix (IV): Effect of MAC's Retransmissions on the Application Layer's Losses	111
Appendix (III): The Detailed Results of the PAP Algorithm	102
Appendix (II): The Voice Capacity Calculations for the 802.11b Networks	97
Appendix (I): The UBT Calculations for the 802.11b Networks	92

List of Figures

		Page
Fig. 2.1	802.11b Architecture, a) IBSS, b) BSS, C) ESS	4
Fig. 2.2	IEEE 802.11b DSSS PHY Frame Format	6
Fig. 2.3	Basic Frame Exchange	7
Fig. 2.4	Frame Exchange using RTS/CTS	8
Fig. 2.5	802.11b MAC Frame Format	9
Fig. 2.6	Equivalent node transformation	16
Fig. 2.7	Transmissions in BSS	16
Fig. 4.1	CSDPS component model	32
Fig. 4.2	MRTS protocol timeline	36
Fig. 5.1	Main Idea of CSM	39
Fig. 5.2	The Pseudo Code of CSM	40
Fig. 5.3	The PAP Algorithm	42
Fig. 5.4	The Pseudo Code of PAP Algorithm	46
Fig. 6.1	The Network Topology in OPNET	51
Fig. 6.2	Avg. throughput for G.711in lossless environment	53
Fig. 6.3	Avg. throughput for G.726 in lossless environment	53
Fig. 6.4	Avg. end-to-end delay for G.711 in lossless environment	54
Fig. 6.5	Avg. end-to-end delay for G.726 in lossless environment	54
Fig. 6.6	Avg. packet loss for G.711 in lossless environment	54
Fig. 6.7	Avg. packet loss for G.726 in lossless environment	54
Fig. 6.8	Avg. MOS for G.711 in lossless environment	55
Fig. 6.9	Avg. MOS for G.726 in lossless environment	55

Fig. 6.10	Avg. throughput (G.711, high load, $FI = 0.02 \text{ sec}$), a) 802.11b, b) PAP	56
Fig. 6.11	Avg. end to end delay (G.711, high load, $FI = 0.02 \text{ sec}$), a) 802.11b, b) PAP	57
Fig. 6.12	Avg. packet loss (G.711, high load, FI = 0.02 sec), a) 802.11b, b) PAP	58
Fig. 6.13	Avg. MOS (G.711, high load, FI = 0.02 sec), a) 802.11b, b) PAP	58
Fig. 6.14	Avg. throughput (G.711, high load, FI = 0.04 sec), a) 802.11b, b) PAP	59
Fig. 6.15	Avg. end to end delay (G.711, high load, $FI = 0.04 \text{ sec}$), a) 802.11b, b) PAP	60
Fig. 6.16	Avg. packet loss (G.711, high load, FI = 0.04 sec), a) 802.11b, b) PAP	61
Fig.6.17	Avg. MOS (G.711, high load, FI = 0.04 sec), a) 802.11b, b) PAP	61
Fig. 6.18	Avg. throughput (G.711, medium load, FI = 0.02 sec), a) 802.11b, b) PAP	62
Fig. 6.19	Avg. end to end delay (G.711, medium load, $FI = 0.02 \text{ sec}$), a) 802.11b, b) PAP.	63
Fig. 6.20	Avg. packet loss (G.711, medium load, FI = 0.02 sec), a) 802.11b, b) PAP	63
Fig. 6.21	Avg. MOS (G.711, medium load, FI = 0.02 sec), a) 802.11b, b) PAP	64
Fig. 6.22	Avg. throughput (G.711, medium load, FI = 0.04 sec), a) 802.11b, b) PAP	65
Fig. 6.23	Avg. end to end delay (G.711, medium load, $FI = 0.04 \text{ sec}$), a) 802.11b, b) PAP.	65
Fig. 6.24	Avg. packet loss (G.711, medium load, FI = 0.04 sec), a) 802.11b, b) PAP	66
Fig. 6.25	Avg. MOS (G.711, medium load, FI = 0.04 sec), a) 802.11b, b) PAP	67
Fig. 6.26	Avg. throughput (G.726, high load, FI = 0.02 sec), a) 802.11b, b) PAP	68
Fig. 6.27	Avg. end to end delay (G.726, high load, $FI = 0.02 \text{ sec}$), a) 802.11b, b) PAP	68
Fig. 6.28	Avg. packet loss (G.726, high load, FI = 0.02 sec), a) 802.11b, b) PAP	69
Fig. 6.29	Avg. MOS (G.726, high load, FI = 0.02 sec), a) 802.11b, b) PAP	70
Fig. 6.30	Avg. throughput (G.726, high load, FI = 0.04 sec), a) 802.11b, b) PAP	71
Fig. 6.31	Avg. end to end delay (G.726, high load, $FI = 0.04 \text{ sec}$), a) 802.11b, b) PAP	71
Fig. 6.32	Avg. packet loss (G.726, high load, FI = 0.04 sec), a) 802.11b, b) PAP	72
Fig. 6.33	Avg. MOS (G.726, high load, FI = 0.04 sec), a) 802.11b, b) PAP	73
Fig. 6.34	Avg. throughput (G.726, medium load, FI = 0.02 sec), a) 802.11b, b) PAP	74

Fig. 6.35	Avg. end to end delay (G.726, medium load, $FI = 0.02 \text{ sec}$), a) 802.11b, b) PAP.	74
Fig. 6.36	Avg. packet loss (G.726, medium load, FI = 0.02 sec), a) 802.11b, b) PAP	75
Fig. 6.37	Avg. MOS (G.726, medium load, FI = 0.02 sec), a) 802.11b, b) PAP	76
Fig. 6.38	Avg. throughput (G.726, medium load, FI = 0.04 sec), a) 802.11b, b) PAP	77
Fig. 6.39	Avg. end to end delay (G.726, medium load, $FI = 0.04 \text{ sec}$), a) 802.11b, b) PAP.	77
Fig. 6.40	Avg. packet loss (G.726, medium load, FI = 0.04 sec), a) 802.11b, b) PAP	78
Fig. 6.41	Avg. MOS (G.726, Medium Load, FI = 0.04 sec), a) 802.11b, b) PAP	79
Fig. 6.42	Avg. throughput improvements for G.711 and G.726	80
Fig. 6.43	Avg. delay improvements for G.711 and G.726	80
Fig. 6.44	Avg. packet loss for G.711 and G.726	81
Fig. 6.45	MOS improvements for G.711 and G.726	81
Fig. 6.46	Avg. throughput improvements for 20 ms and 40 ms framing intervals	82
Fig. 6.47	Avg. delay improvements for 20 ms and 40 ms framing intervals	83
Fig. 6.48	Avg. packet loss for 20 ms and 40 ms framing intervals	83
Fig. 6.49	MOS improvements for 20 ms and 40 ms framing intervals	84
Fig. 6.50	Avg. throughput improvements for high and medium loads	85
Fig. 6.51	Avg. delay improvements for high and medium loads	85
Fig. 6.52	Avg. packet loss for high and medium loads	86
Fig. 6.53	MOS improvements for high and medium loads	86
Fig. 6.54	Failed sessions capacity (G.711, high load), a) $FI = 20 \text{ ms}$, b) $FI = 40 \text{ ms}$	87
Fig. 6.55	Failed sessions capacity (G.711, medium load), a) $FI = 20 \text{ ms}$, b) $FI = 40 \text{ ms}$	88
Fig. 6.56	Failed sessions capacity (G.726, high load), a) $FI = 20 \text{ ms}$, b) $FI = 40 \text{ ms}$	88
Fig.6.57	Failed sessions capacity (G.726, medium load), a) $FI = 20 \text{ ms}$, b) $FI = 40 \text{ ms}$	89
Figure I.1	UBT Values for the BFE a) IBSS Networks b) BSS Networks	94
Figure I.2	UBT Values for the RFE a) IBSS Networks b) BSS Networks	96

Figure II.1	Voice Capacity of the G.726 Encoder Using the BFE, a) FI = 10 ms b) FI = 20 ms c) FI = 30 ms d) FI = 40 ms e) FI = 50 ms	98
Figure II.2	Voice Capacity of the G.726 Encoder Using the RFE, a) $FI = 10 \text{ ms}$ b) $FI = 20 \text{ ms}$ c) $FI = 30 \text{ ms}$ d) $FI = 40 \text{ ms}$ e) $FI = 50 \text{ ms}$	99
Figure II.3	Voice Capacity of the G.711 Encoder Using the BFE, a) $FI = 10 \text{ ms}$ b) $FI = 20 \text{ ms}$ c) $FI = 30 \text{ ms}$ d) $FI = 40 \text{ ms}$ e) $FI = 50 \text{ ms}$	100
Figure II.4	Voice Capacity of the G.711 Encoder Using the RFE, a) $FI = 10 \text{ ms}$ b) $FI = 20 \text{ ms}$ c) $FI = 30 \text{ ms}$ d) $FI = 40 \text{ ms}$ e) $FI = 50 \text{ ms}$	101
Figure IV.1	MAC Layer Losses vs. Application Layer Losses	112
Figure IV.2	MAC Layer Losses vs. MOS Value	112

List of Tables

		Page
Table 2.1	802.11 Network Standards	3
Table 2.2	Global Spectrum Allocation at 2.4 GHz	5
Table 3.1	MSDU in bytes for different voice encoders	24
Table 3.2	Speech Transmission Quality and Correspondent MOS and Rating Factor R values	25
Table 5.1	The Notations of CSM Pseudo Code	40
Table 5.2	The Notations of PAP Pseudo Code	45
Table 6.1	Calculations of the High and Medium Loads	55
Table I.1	IEEE 802.11b Parameters	92
Table III.1:	Results of (G.711, FI = 0.02 sec, High Load)	103
Table III.2	Results of (G.711, FI = 0.02 sec, Medium Load)	104
Table III.3	Results of (G.711, FI = 0.04 sec, High Load)	105
Table III.4	Results of (G.711, FI = 0.04 sec, Medium Load)	106
Table III.5	Results of (G.726, FI = 0.02 sec, High Load)	107
Table III.6	Results of (G.726, FI = 0.02 sec, Medium Load)	108
Table III.7	Results of (G.726, FI = 0.04 sec, High Load)	109
Table III.8	Results of (G.726, FI = 0.04 sec, Medium Load)	110