THE ROLE OF SOIL CONDITIONERS IN LIMITING CHEMICAL SOIL DEGRADATION IN EL-SAFF REGION

BY

Dalia Nabil Ibrahim Hassan

(B.Sc. Science (Applied Chemistry), Damascus Univ., 1997)

A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In Analytical Chemistry

Chemistry Department Faculty of Science Ain Shams University 2005

THE ROLE OF SOIL CONDITIONERS IN LIMITING CHEMICAL SOIL DEGRADATION IN EL-SAFF REGION

\mathbf{BY}

Dalia Nabil Ibrahim Hassan

(B.Sc. Science (Applied Chemistry), Damascus Univ., 1997)

Under the supervision of:

Prof. Dr. Mohamed Fathy El-Shahat

Prof. of Analytical Chemistry Faculty of Science, Ain Shams University.

Dr. Gamal Ghoneim S. Beheiry

Assistant Prof. of Soils Soil Conservation Department, Desert Research Center.

Dr. Ezzat Abdel-Maboud El-Eweddy

Researcher of Soils Soil Conservation Department, Desert Research Center.

Head of Chemistry Department

Prof. Dr. M. Y. El Kady

ACKNOWLEDGEMENT

All thanks to Allah, for his induced blessing to achieve goals and make them possible.

I wish to express my deep gratitude to **Prof. Dr. Mohamed Fathy El-Shahat**, prof. of analytical chemistry, Faculty of Science, Ain Shams University, for advice, kind encouragement, constructive criticism and revising the manuscript.

I would like to express my deepest thanks and gratitude to **Dr. Gamal Ghoneim S. Beheiry**, assistant prof. of soils, Soil Conservation Department, Desert Research center, for suggesting the topics of this thesis, his planning of research, supervision, valuable advice, capable guidance and constructive criticism which greatly contribute to the completion of this work.

Deep thanks are also due to **Dr. Ezzat Abdel-Maboud El-Eweddy**, researcher of soils, Soil Conservation Department, Desert Research Center, for his great support, kindly supervision and encouragement during this work.

Special thanks to **Dr. Mohamed Hussein Ali**, assistant prof. of soils, Soil Conservation Department, Desert research Center, for his contribution to the completion of this work, sincere guidance, valuable help and advice.

Thanks are also expressed to **Dr. Mamdouh I. M. Khoder**, assistant prof. of Air Pollution Department, National Research Center, for valuable comments and helping.

Special thanks to the heads of soil conservation department of desert research center, **Prof. Dr. Mohamed M. Wassif** and **Prof. Dr. Ahmed El-Shall**, for facilities they offered which helped me to achieve this study.

Finally, I would like to thank my father, **Prof. Dr. Nabil Ibrahim Hassan**, for his help and advice, my mother, husband, sisters and my brother for their encouragement during research phases.

Approval Sheet

THE ROLE OF SOIL CONDITIONERS IN LIMITING CHEMICAL SOIL DEGRADATION IN EL-SAFF REGION

BY Dalia Nabil Ibrahim Hassan

(B.Sc. Science (Applied Chemistry), Damascus Univ., 1997)

This Thesis for M. Sc. Degree has been approved by:		
Prof. Dr. Ibrahim Mohamed El-Naggar		
Prof. Dr. Hassan Hamza Abbas		
Prof. Dr. Mohamed Fathy El-Shahat (supervisor) Prof. of Analytical Chemistry Faculty of Science, Ain Shams University.		

ACKNOWLEDGEMENT

All thanks to Allah, for his induced blessing to achieve goals and make them possible.

I wish to express my deep gratitude to **Prof. Dr. Mohamed Fathy El-Shahat**, prof. of analytical chemistry, Faculty of Science, Ain Shams University, for advice, kind encouragement, constructive criticism and revising the manuscript.

I would like to express my deepest thanks and gratitude to **Dr. Gamal Ghoneim S. Beheiry**, assistant prof. of soils, Soil Conservation Department, Desert Research center, for suggesting the topics of this thesis, his planning of research, supervision, valuable advice, capable guidance and constructive criticism which greatly contribute to the completion of this work.

Deep thanks are also due to **Dr. Ezzat Abdel-Maboud El-Eweddy**, researcher of soils, Soil Conservation Department, Desert Research Center, for his great support, kindly supervision and encouragement during this work.

Special thanks to **Dr. Mohamed Hussein Ali**, assistant prof. of soils, Soil Conservation Department, Desert research Center, for his contribution to the completion of this work, sincere guidance, valuable help and advice.

Thanks are also expressed to **Dr. Mamdouh I. M. Khoder**, assistant prof. of Air Pollution Department, National Research Center, for valuable comments and helping.

Special thanks to the heads of soil conservation department of desert research center, **Prof. Dr. Mohamed M. Wassif** and **Prof. Dr. Ahmed El-Shall**, for facilities they offered which helped me to achieve this study.

Finally, I would like to thank my father, **Prof. Dr. Nabil Ibrahim Hassan**, for his help and advice, my mother, husband, sisters and my brother for their encouragement during research phases.

ABSTRACT

Dalia Nabil Ibrahim Hassan. The Effect of Soil Conditioners in Limiting Chemical Soil Degradation in El-Saff Region. Unpublished M. Sc. Thesis, University of Ain Shams, Faculty of Science, Department of Chemistry, 2005.

The present investigation was carried out to study the effect of pollutants resulting from industrial activities at El-Saff region on agricultural soil and plant. It comprised two separate parts. The first dealt with monitoring experiment and the second was a pot experiment.

The monitoring experiment was carried out near Tafla Bricks Factory to monitor the pollution during four seasons of the year. Using the later as a starting point, five distances from the source of pollution were selected, zero, 250, 500, 750 and 1000 m. Soil, plant, water and air samples were collected from the previous distances during the four seasons of the year (from Summer 2003 to Spring 2004).

The data indicated that heavy metals content in irrigation water at the four seasons were within the permissible levels, while they are relatively high in air. This indicates that such factory was the main source of pollution. Values of heavy metals in air decreased with increasing distance away from the source of pollution and the highest values were associated with summer and spring seasons.

Also, data showed slight accumulation of heavy metals in soil at zero distance and decreased with increasing the distance from the factory. The highest values of soil heavy metals were obtained with summer season.

Data indicated that the concentration of heavy metals reached the critical levels in some plants, the highest values were recorded with turnip, onion and olive plants. Cd and Pb concentration in plant tissues decreased with increasing the distance from the factory, while there was no remarkable trend shown with other metals. Also, the concentration of heavy metals differed from season to another for the same plant type without clear trend.

The pot experiment was carried out under greenhouse conditions in Desert Research Center (September 2003) to study the role of farmyard manure (0, 10, 20 m³/fed.) as a natural soil conditioner and polyvinyl acetate (0, 0.5, 1.0 %) as a synthetic soil conditioner in reducing heavy metals of soil and consequently plant. Surface soil samples were taken in summer season from the previous five distances.

Spinach plant was cultivated as an indicator of heavy metals reduction by soil conditioners where it is considered as hyper accumulator of heavy metals.

The data indicated that the application of these soil conditioners increased significantly soil organic matter content, total soil nitrogen, available phosphorus as well as availability of soil micronutrients (Fe, Mn, Zn and Cu) while the application of the two conditioners under investigation decreased significantly soil pH, soil salinity and available heavy metals (Ni, Cd and Pb) in soil.

Regarding the effect of soil conditioners on spinach plant, data showed that the application of both farmyard manure and polyvinyl acetate significantly increased the dry weight of spinach yield as well as its content and uptake of nitrogen, phosphorus and Fe, Mn, Zn and Cu. The rate of increment increased with increasing the application rate of the two soil conditioners. On the other hand, the application of the two conditioners significantly decreased the concentration of Ni, Cd and Pb in spinach plants, while they increased the uptake of these metals by spinach plants.

It is clear that the application of farmyard manure at a rate of 20 m³/fed. was superior to all other treatments as it caused significant and positive changes in soil chemical properties and enhanced the dry weight yield of spinach and its nutrients content and uptake. It also caused significant reduction in heavy metals content of soil and plant.

Key words: El-Saff region, air pollution, soil conditioners, soil properties, available nutrients, heavy metals, spinach productivity.

LIST OF TABLES

No.	
1	Heavy metals content of irrigation water during four seasons
2	Some chemical properties of initial soil and farmyard manure
3	Effect of industrial activities on air contents of the studied heavy metals
4	Effect of air pollution on soil iron content at different distances during the four seasons
5	Effect of air pollution on soil manganese content at different distances during the four seasons
6	Effect of air pollution on soil zinc content at different distances during four seasons
7	Effect of air pollution on soil copper content at different distances during the four seasons
8	Effect of air pollution on soil nickel content at different distances during the four seasons
9	Effect of air pollution on soil lead content at different distances during the four seasons
10	Effect of air pollution on soil cadmium content at different distances during the four seasons
11	Effect of industrial fallout on plant heavy metals content
12	Effect of soil conditioners on salinity (EC, dS/m) of soils taken at different distances from source of pollution
13	Effect of soil conditioners on pH of soils taken at different distances from source of pollution
14	Effect of soil conditioners on organic matter content (%) of soils taken at different distances from source of
15	pollution Effect of soil conditioners on total nitrogen (mg.kg ⁻¹) of soils taken at different distances from source of
	pollution

LIST OF TABLES (cont.)

No		Page
16	Effect of soil conditioners on available phosphorus (mg.kg ⁻¹) of soils taken at different distances from source of pollution	91
17	Effect of soil conditioners on micronutrient contents (mg.kg ⁻¹) of soils taken at different distances from source of pollution	94
18	Effect of soil conditioners on heavy metal contents (mg.kg ⁻¹) of soils taken at different distances from source of pollution	98
19	Effect of soil conditioners on values of dry matter yield (g/pot) of spinach plants grown on soils taken at different distances from source of pollution	103
20	Effect of soil conditioners on nitrogen content (%) of spinach plants grown on soils taken at different distances from source of pollution	107
21	Effect of soil conditioners on nitrogen uptake (mg/pot) by spinach plants grown on soils taken at different distances from source of pollution	110
22	Effect of soil conditioners on phosphorus content (mg/g) of spinach plants grown on soils taken at	
23	different distances from source of pollution Effect of soil conditioners on phosphorus uptake (mg/pot) by spinach plants grown on soils taken at	112
24	different distances from source of pollution Effect of soil conditioners on micronutrient contents (mg.kg ⁻¹) in spinach plants grown on soils taken at	115
25	different distances from source of pollution Effect of soil conditioners on micronutrients uptake (mg/pot) by spinach plants grown on soils taken at	118
26	different distances from source of pollution Effect of soil conditioners on heavy metal contents (mg.kg ⁻¹) of spinach plants grown on soils taken at	120
	different distances from source of pollution	125

LIST OF TABLES (cont.)

No			Page
27		soil conditioners on heavy metals uptake by spinach plants grown on soils taken at	
	different d	listances from source of pollution	128
App	oendix (1)	Recommended maximum concentration of trace elements in irrigation water (FAO,	
		1985)	159
App	oendix (2)	Effect of industrial activities on heavy metals content in suspended particulate	
		matter	160
App	endix (3)	Effect of industrial activities on fume heavy	
		metals content	161

LIST OF FIGURES

No.		Page
1	Soil site location of the studied area	39
2	Environmental air sampling apparatus	41
3	Effect of air pollution on soil iron content at	
	different distances during the four seasons	52
4	Effect of air pollution on soil manganese content at	
	different distances during the four seasons	55
5	Effect of air pollution on soil zinc content at	
	different distances during the four seasons	58
6	Effect of air pollution on soil copper content at	
	different distances during the four seasons	61
7	Effect of air pollution on soil nickel content at	
	different distances during the four seasons	64
8	Effect of air pollution on soil lead content at	
	different distances during the four seasons	67
9	Effect of air pollution on soil cadmium content at	
	different distances during the four seasons	71
10	Effect of soil conditioners on salinity (EC) of soils	
	taken at different distances from source of pollution	78
11	Effect of soil conditioners on pH of soils taken at	
	different distances from source of pollution	82
12	Effect of soil conditioners on organic matter of soils	
	taken at different distances from source of pollution	85
13	Effect of soil conditioners on total nitrogen of soils	
	taken at different distances from source of pollution	88
14	Effect of soil conditioners on available phosphorus	
	of soils taken at different distances from source of	
	pollution	92
15	Effect of soil conditioners on micronutrient contents	
	of soils taken at different distances from source of	
	pollution	95
16	Effect of soil conditioners on heavy metal contents	
	of soils taken at different distances from source of	
	pollution	99

LIST OF FIGURES (Cont.)

No.		Page
17	Effect of soil conditioners values of dry matter yield	Ü
	of spinach plants grown on soils taken at different	
	distances from source of pollution	104
18	Effect of soil conditioners on nitrogen content of spinach plants grown on soils taken at different	
	distances from source of pollution	108
19	Effect of soil conditioners on nitrogen uptake by spinach plants grown on soils taken at different	
	distances from source of pollution	111
20	Effect of soil conditioners on phosphorus content of spinach plants grown on soils taken at different	
	distances from source of pollution	113
21	Effect of soil conditioners on phosphorus uptake by spinach plants grown on soils taken at different	
	distances from source of pollution	116
22	Effect of soil conditioners on micronutrient contents	
	in spinach plants grown on soils taken at different	
	distances from source of pollution	119
23	Effect of soil conditioners on micronutrients uptake	
	by spinach plants grown on soils taken at different	
	distances from source of pollution	121
24	Effect of soil conditioners on heavy metal contents	
	of spinach plants grown on soils taken at different	
	distances from source of pollution	126
25	Effect of soil conditioners on heavy metals uptake	
	by spinach plants grown on soils taken at different	
	distances from source of pollution	129

CONTENTS

No	Page
ACKNOWLEDGEMENT	i
ABSTRACT	ii
LIST OF TABLES.	iv
LIST OF FIGURES	vii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	2
2.1. Heavy metals in environment.	2
2.1.1. General	2
2.1.2. Heavy metals in irrigation water	3
2.1.3. Heavy metals in air	4
2.1.4. Heavy metals in plants grown on polluted	
soil	7
2.1.5. Heavy metals in soil	11
2.1.5.1. Iron	11
2.1.5.2. Manganese	13
2.1.5.3. Zinc	15
2.1.5.4. Copper	17
2.1.5.5. Nickel	18
2.1.5.6. Lead	19
2.1.5.7. Cadmium	21
2.2. Effect of soil conditioners on some soil chemical	
properties	23
2.2.1. Soil pH values	24
2.2.2. Electrical conductivity (EC)	25
2.2.3. Soil organic matter	26
2.2.4. Soil nitrogen and phosphorus	28
2.2.5. Micronutrients in soil	31
2.3. Effect of soil conditioners on plant growth and yield	32
2.3.1. Crop yield	32
2.3.2. Macronutrients	34
2.3.3. Micronutrients in plant	36
3. MATERIALS AND METHODS	38
3.1. Experiments layout	38
3.2. Monitoring experiment	38
3.2.1. Soil and plant sampling	40
3.2.2. Air sampling	40
3.2.3. Water sampling	40

CONTENTS (Cont.)

No	pag
3.3. Pot experiment	42
3.3.1. Soil sampling	42
3.3.2. Experimental design	42
3.4. Soil and plant analyses	44
3.4.1. Soil analysis	44
3.4.2. Plant analysis	45
3.4.3. Air analysis	46
3.4.4. Water analysis	46
4. RESULTS AND DISCUSSION	47
4.1. The monitoring experiment	47
4.1.1. Heavy metals in irrigation water	47
4.1.2. Effect of industrial activities on the	
concentration of heavy metals in the	
atmosphere of studied area	47
4.1.3. Effect of industrial fallout on soil contents of	
heavy metals	50
4.1.3.1. Iron	50
4.1.3.2. Manganese	53
4.1.3.3. Zinc	56
4.1.3.4. Copper	59
4.1.3.5. Nickel	62
4.1.3.6. Lead	65
4.1.3.7. Cadmium	69
4.1.4. Effect of industrial fallout on chemical	
composition of plant	72
4.2. The pot experiment	76
4.2.1. Effect of soil conditioners on chemical	
properties of soils taken from different	
distances from source of pollution	76
4.2.1.1. Electrical conductivity (EC)	76
4.2.1.2. Soil reaction (pH)	80
4.2.1.3. Soil organic matter	83
4.2.1.4. Total nitrogen	86
4.2.1.5. Available soil phosphorus	90
4.2.1.6. Soil micronutrients	93
4.2.1.7. DTPA-extractable Ni. Pb and Cd	97

CONTENTS (Cont.)

001(121(18 (0010))	_
No	Pag
4.2.1.7.1. DTPA-extractable Ni	97
4.2.1.7.2. DTPA-extractable Pb	100
4.2.1.7.3. DTPA-extractable Cd	101
4.2.2. Plant analyses	102
4.2.2.1. Dry Weight of spinach plants	102
4.2.2.2. Nitrogen and phosphorus content and	
uptake by spinach plants	106
4.2.2.3. Micronutrients concentration in	
spinach plants and total uptake	117
4.2.2.4. Heavy metals content in spinach	
plants and total uptake	124
4.2.2.4.1. Nickel content in spinach	
-	126
plants	120
4.2.2.4.2. Lead content in spinach	130
plants	150
4.2.2.4.3. Cadmium content in spinach	131
plants	
5. SUMMARY	132
6. REFERENCES	137
الملخص العرب	