POLYUNSATURATED FATTY ACIDS PRODUCTION FROM ALGAE AND THEIR APPLICATION IN THERAPEUTIC NUTRITION

By

SHERAZ MOSTAFA KAMAL ELSAYED ABD-ALLAH

B.Sc. Agric. Sc. (Food Sci. & Tech.), Ain-Shams University, 2009

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

MASTER OF SCIENCE

in

Agricultural Sciences

(Food Science & Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

POLYUNSATURATED FATTY ACIDS PRODUCTION FROM ALGAE AND THEIR APPLICATION IN THERAPEUTIC NUTRITION

By

SHERAZ MOSTAFA KAMAL ELSAYED ABD-ALLAH

B. Sc. Agric. Sc. (Food Sci. & Tech.), Ain-Shams University, 2009

This	This thesis for M. Sc. Degree has been approved by:		
Dr.	Mahmoud Hassan Mohamed		
	Prof. of Food Industries, Faculty of Agriculture, Moshtohor, Banha Univ.		
Dr.	Nagwa Mousa Hassan Rasmy		
	Prof. Emeritus of Food Science and Technology, Faculty of		
	Agriculture, Ain Shams Univ.		
Dr.	Amal Ahmed Hassan		
	Prof. of Food Science and Technology, Faculty of Agriculture, Ain		
	Shams University		
Dr.	Manar Tawfik Ibrahim Mousa		
	Prof. of Food Science and Technology, Faculty of Agriculture, Ain		
	Shams University (Principal Supervisor)		

Date of Examination: / / 2017

POLYUNSATURATED FATTY ACIDS PRODUCTION FROM ALGAE AND THEIR APPLICATION IN THERAPEUTIC NUTRITION

SHERAZ MOSTAFA KAMAL ELSAYED ABD-ALLAH

B. Sc. Agric. Sc. (Food Sci. & Tech.), Ain-Shams University, 2009

Under the supervision of:

Dr. Manar Tawfik Ibrahim Mousa

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Amal Ahmed Hassan

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Howida Abdallah Mohamed

Prof. of Food Science and Technology, Food Science and technology Institute – Agricultural Research Center

ABSTRACT

Sheraz Mostafa Kamal ELSayed Abd-Allah: Polyunsaturated Fatty Acids Production from Algae and Their Application in Therapeutic Nutrition. Unpublished M. Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2017.

Firstly, two different microalgae were used in the current study to evaluate whether their successive indoor growth using industrial food wastes including okara and potato peels as growth enriching medium.

The used algae were Chlorella vulgaris and Nannochloropsis oculata. The basic nutrient solutions were BG-II for Chlorella, while F2 was used for Nannochloropsis growth. Okara as well as potato peals extracts were used in four concentration (25, 50, 75, 100 %) verses to control and based on their initial nitrogen content. In both in and out-door cultivation, the investigated parameters were dry weigh (g.l⁻¹); total chlorophyll (mg.l⁻¹) and total carotenoids (mg.l⁻¹). Maximum dry weight of Chlorella was obtained with 25% of okara waste extract. As for Nannochloropsis, a slight increase was observed with all okara extract concentrations used. Data of dry weight for Chlorella vulgaris showed that the lowest concentration (25%) of potato peels extract surpasses all other tested concentrations . While in the case of Nannochloropsis oculata increasing of potato peels extract percent led to the marked increase of dry weight accumulation. Induction of algae was done with cultures those resulted in maximum dry weight with the proper waste extract concentration in presence of stress factors. Sodium chloride (1 and 2 %) with 125 ppm ferrous sulfate was used as stress factors engaged the accumulation of algal lipid in the presence of organic carbon from wastes.

Okara and potato peels extracts in stressed growth media supporting algae by an extra potential in concern carotene accumulation. Sodium chloride at 1.0 and 2.0% increased carotene content as fed by zero time. *Chlorella vulgaris* was found to be rich in protein (48.2%)

rather than *Nannochloropsis oculata* (28.0%). On the other hand, oil content of *Nannochloropsis oculata*(12.4%) surpasses *Chlorella vulgaris* content (9.51%).

Once growth conditions in concern nutritional status were changed by stress conditions, such chemical composition was dramatically changed. Thus, oil content of both algae was raised to be 14.9 and 16.57% with *Chlorella vulgaris* and *Nannochloropsis oculata*, respectively. The effect of microalgae *Chlorella vulgaris* and *Nannochloropsis oculata* as a food supplement on body and organ weight, lipid profile, liver and kidney functions and histopathological examination of liver, kidney and spleen tissues in hyperchlosterolmic rats was evaluated.

Nannochloropsis elicited anti-hypercholesterolemic properties by significantly lowering the level of lipids by reducing serum total cholesterol, serum triglyceride and LDL-c levels. Chlorella and Nannochloropsis significantly increased also the HDL-c and corrected liver and kidney functions, especially alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea and creatinine, reduced atherogenic index (AI) and increased HTR (%) as compared to untreated hypercholesterolemic ones. The histopathological examination of liver, kidney and spleen of hypercholesterolemic-treated rats with algae indicated that the Chlorella vulgaris and Nannochloropsis oculata biomass are potent natural hypocholesterolemic supplementations or nutraceuticals for the amelioration of hypercholesterolemia in rats.

In this study, we intended to produce cookies by utilizing fresh and dried *Chlorella vulgaris* algae at concentration level of 1, 2 and 3 % with 0 % serving as control. Protein and fat content for both samples of cookies with fresh and dried *Chlorella vulgaris* algae increased by increasing the level of addition compared with control samples. Spread

ratio of cookies with dried and fresh *Chlorella vulgaris* algae increased by increasing the addition level.

The lightness (L-value) was slightly affected by addition of dry algae .The yellowness (b-value) of the cookies sample ranged between 29.5 to 35.69).The remarkable differences in the rheological parameters of the tested cookies samples was that of the work (Energy) required to break the samples. The cookies with fresh *Chlorella vulgaris* has high scores of sensory evaluation compared with the control. These results revealed that cookies are traditional and nutritious food, can be healthy and very attractive when prepared with the addition of fresh *Chlorella vulgaris*. Moreover, the enhancement of textural properties and the good nutritional profile of the cookies obtained, reveal a new niche food market.

Key words: Algae, *Chlorella vlgaris*; *Nannochloropsis oculata*; poly unsaturated fatty acids; omega – 3; okara; potato peels waste; stress conditions; hypercholesterolemic and cookies.

ACKNOLEDGMENT

First and before all, full praise and gratitude is to **ALLAH**, who granted me the ability to perform this thesis and helped me to pass safely through all the difficulties.

I wish to express my sincere gratitude to Prof. Dr. **Manar Tawfeek Ibrahim** Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for her supervision, invaluable expertise, guidance and encouragement throughout the course of my research. I also thank her for her patience and time in putting my final thesis.

I also thank Prof. Dr. **Amal Ahmed Mohamed** Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for her kind supervision, long lasting beneficial instructions, continuous guidance and continuous encouragement during the course of this work.

I also thank Prof. Dr. **Howida Abdallah,** Prof. of Food Science and Technology, food Tech. Res. Inst., Agric Res. Center, for her supervision, advice given throughout the whole study and her meticulous observation, continuous guidance and continuous encouragement during the course of this work.

Deepest thanks and sincere appreciation to Prof. Dr **Abo El-Khair B. El-Sayed**, Prof. of Algal Biotechnology, Head of Algal Biotechnology Unit, National Research Centre (NRC), whom I was fortunate enough to be one of his students, for giving me the opportunity to do my project in the Algal Biotechnology Unit, NRC, providing me with all the facilities I need, his valuable help, guidance and motivation during this research work.

Thanks are also extended to Prof. Dr. Yehia Hekal,. Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University for his great cooperation and encouragement. Also many thanks to my friends and colleagues in Department of Food Science, Faculty of Agriculture, Ain Shams University, for their cooperation during this work.

CONTENTS

	Page
LIST OF TABLES	iv
LIST OF FIGURES	vii
1. INTODUCCTION	1
2. REVIEW OF LITRATURE	6
2.1 Algae	6
2. 1. 1.Microalgae	6
2. 1. 2. The most biotechnologically relevant microalgae	7
2. 1. 2. 1. <i>Chlorella</i>	7
2. 1. 2. 2. Nannochloropsis oculata	8
2. 2. Algae cultivation system	9
2. 2. 1. Cultivation techniques of microaglae	10
2. 2. 1. 1. Open systems	11
2. 2. 1. 2. Closed systems (photobioreactors)	11
2. 3. Growth conditions of algae	12
2. 4. Polyunsaturated fatty acids (PUFA)	14
2. 4. 1. Polyunsaturated fatty acids in general	14
2. 4. 2. Production of Polyunsaturated fatty acids from algae	15
2. 5. Approaches to lipid production improvements	16
2. 5. 1. Light intensity	17
2. 5. 2. Temperature	17
2. 5. 3. Carbon Dioxide	18
2. 5. 4. Nutrient starvation	19
2. 5. 5. Salinity stress	19
2. 5. 6. Metal stress	20
2. 6. Food industrial wastes	20
2. 6. 1. Okara	21
2. 6. 2. Potato peels	22
2. 7. Utilization of algae	23
2. 7. 1. Algae as nutritional and functional food sources	23
2. 7. 2. Algae in industrial applications	25

	Page
2. 7. 2. 1. Use in pharmaceuticals	25
2. 7. 2. 2. Use in biofertilizer	25
2. 7. 2. 3. Use in aquaculture feed	26
2. 7. 2. 4. Use in biofuel	27
2. 7. 2. 5. Use in cosmetics	27
2. 7. 3. Algae in food products	27
2. 7. 3. 1. Supplement biscuits with algae	28
2. 7. 3. 2. Supplement bread with algae	29
2. 7. 3. 3. Supplement pasta with algae	29
2. 7. 3. 4. Using algae as coloring agent in biscuits	30
2. 8. Biological evaluation of microalgae biomass	30
2. 9. Toxicity and safety of using algal products of algae as	33
supplement in food products	
3. MATERIALS AND METHODS	36
3.1. MATERIALS	36
3. 1. 1. Algae	36
3. 1. 2. Nutrient solutions growth media	36
3. 1. 3. Wastes source	38
3. 1. 4. Chemicals and reagents	38
3. 1. 5. Other materials	38
3. 2. METHODS	38
3. 2. 1. Algae cultivation	38
3. 2. 1. 1. Growth conditions	38
3. 2. 1. 1. 1. Growth units	39
3. 2. 1. 1. 1. Indoor growth unit	39
3. 2. 1. 1. 1. 2. Outdoor growth unit	39
3. 2. 1. 2. Analysis and preparation of wastes	41
3. 2. 1. 3. Experiments	43
3. 2. 1. 3. 1. Vegetative growth experiments	43
3. 2. 1. 3. 1. 1. Effect of okara extract concentrations on <i>Chlorella</i>	43
vulgaris and Nannochloropsis oculata on vegetative growth	

	Page
3. 2. 1. 3. 1. 2. Effect of potato peels extract concentrations on	43
Chlorella vulgaris and Nannochloropsis oculata on	
vegetative growth	
3. 2. 1. 3. 2. Stress growth experiments	44
3. 2. 1. 3. 2. 1. Effect of okara extract concentrations and stress	44
factors on Chlorella vulgaris and Nannochloropsis	
oculata on carotenogensis growth	
3. 2. 1. 3. 2. 2. Effect of potato peels extract concentrations and	44
stress factors on Chlorella vulgaris and	
Nannochloropsis oculata on carotenogensis growth	
3. 2. 1. 3. 3. Outdoor growth	44
3. 2. 1. 3. 4. Harvesting	44
3. 2. 1. 3. 5. Growth parameters	45
3. 2. 1. 3. 5. 1. Dry weight	45
3. 2. 1. 3. 5. 2. Total chlorophyll	45
3. 2. 1. 3. 5. 3. Total carotenoids	46
3. 2. 1. 3. 5. 4. Oil extraction and determination	47
3. 2. 1. 3. 5. 5. Fatty acid methyl ester profile of algal oil	48
3. 2. 1. 3. 6. Chemical analysis of outdoor produced algae	49
3. 2. 1. 3. 7. Growth analysis	49
3. 2. 2. Biological experiment	50
3. 2. 2. 1. Animal housing and diets	50
3. 2. 2. Histopathology Technique	52
3. 2. 2. 3. Biological Determination	52
3. 2. 2. 4. Biochemical analysis	52
3. 2.2. 4. 1. Determination of plasma total cholesterol (TC)	53
3. 2. 2. 4. 2. Determination of plasma HDL-Cholesterol	53
3. 2. 2. 4. 3. Determination of plasma triglycerides (TG)	53
3. 2. 2. 4. 4. Determination of plasma LDL-cholesterol	54
3.2.2.4.5. Determination of glutamate oxaloacetate transaminase	54
(GOT) or asparatate aminotransferase(AST) activity	

	Page
3. 2. 2. 4. 6. Determination of glutamate pyruvate transaminase	54
(GPT) or alanine aminotransferase (ALT) activity	
3. 2. 2. 4. 7. Determination of urea	54
3. 2. 2. 4. 8. Determination of creatinine	54
3. 2. 3. Fortified cookies with <i>Chlorella vulgaris</i>	54
3. 2. 3. 1. Cookies preparation	54
3. 2. 3. 2. Chemical composition of Fortified cookies with <i>Chlorella</i>	55
vulgaris	
3. 2. 3. 3. Evaluation of cookies for physical characteristics of	56
cookies	
3. 2. 3. 4. Color measurements	56
3. 2. 3. 5. Texture analysis	56
3. 2. 3. 6. Sensory evaluation of cookies	57
3. 2. 4. Statistical analysis	58
4. RESULTS AND DISCUSSION	59
4.1. production of algae rich in polyunsaturated fatty acids	59
4. 1. 1. Chemical composition of wastes	59
4. 1. 2. Algal vegetative growth as affected by wastes extract	63
enrichment	
4. 1. 2. 1. Effect of okara waste extract concentrations on vegetative	64
growth of Chlorella vulgaris and Nannochloropsis	
oculata	
4. 1. 2. 1. 1. Effect on algal dry weight	64
4. 1. 2. 1. 2. Effect on algal chlorophyll	67
4.1. 2. 1. 3. Effect on algal carotenoids	70
4. 1. 2. 2. Effect of potato peals waste extract concentrations on	72
vegetative growth of Chlorella vulgaris and	
Nannochloropsis oculata	
4. 1. 2. 2. 1. Effect on algal dry weight	72
4. 1. 2. 2. Effect on algal chlorophyll	75

	Page
4 1 2 2 2 Effect on cloud countencide	77
4. 1. 2. Stress growth	77
4. 1. 3. Stress growth	80
4. 1. 3. 1. Effect of stress growth conditions on dry weight of	81
Chlorella vulgaris and Nannochloropsis oculata	
4. 1. 3. 1. 1. Effect of stressed BG-II / F2 media on algal dry weight	81
4. 1. 3. 1. 2. Effect of stressed okara extract medium on algal dry	83
weight	
4. 1. 3. 1. 3. Effect of stressed potato peels extract medium on algal	85
dry weight	
4. 1. 3. 2. Effect of stress growth conditions on chlorophyll and	87
carotene of Chlorella vulgaris and Nannochloropsis	
oculata	
4. 1. 3. 2. 1. Total chlorophyll	87
4. 1. 3. 2. 1. 1. Effect of stressed BG-II/F2 media on algal	87
chlorophyll	
4. 1. 3. 2. 1. 2. Effect of stressed okara extract medium on algal	89
chlorophyll	
4. 1. 3. 2. 1. 3. Effect of stressed potato peels extract medium on	91
algal chlorophyll	
4. 1. 3. 2. 2. Total carotene	94
4. 1. 3. 2. 2. 1. Effect of stressed BG-II/ F2 media on algal carotene	94
4. 1. 3. 2. 2. Effect of stressed okara extract medium on algal	96
carotene	
4. 1. 3. 2. 2. 3. Effect of stressed potato peels extract medium on	98
algal carotene	
4. 1. 4. Outdoor growth of algae	100
4. 1. 5. Oil content and fatty acid methyl esters in response to algae	102
growth conditions	
4. 1. 6. Fatty acid methyl esters of <i>Chlorella vulgaris</i> and	102
Nannochloropsis oculata	

	Pag
4. 2. Biological evaluation of microalgae <i>Chlorella vulgaris</i> and <i>Nannochloropsis oculata</i> in hyperchlosterolemic	107
4. 2. 1. Body weight, body weight gain and organ weight	109
4. 2. 2. Serum lipid profile	114
4. 2. 2. 1. Total serum cholesterol (TC)	114
4. 2. 2. Serum triglycerides level (TG)	119
4. 2. 2. 3. Serum lipoprotein fraction	123
4. 2. 2. 3. 1. Low density lipoprotein cholesterol (LDL –c)	123
4. 2. 2. 3. 2. Very low density lipoprotein cholesterol (VLDL – c)	126
4. 2. 2. 3. 3. High density lipoprotein cholesterol (HDL – c)	129
4. 2. 2. 3. 4. Lipoprotein fraction ratios TC / HDL – c, LDL/ HDL – c and HTR (%)	131
4. 2. 2. 3. 5. Atherogenic index (AI)	134
4. 2. 3. Liver functions	137
4. 2. 4. Kidney functions	142
4. 2. 5. Histopathological examination of liver, kideney and spleen tissues of normal, hyperchlostrolemic and treated rats	148
4. 2. 5. 1. Liver tissue	148
4. 2. 5. 2. Kidney tissue	158
4. 2. 5. 3. Spleen tissue	163
4. 3. Fortified cookies with <i>Chlorella vulgaris</i>4. 3. 1. Chemical composition of Fortified cookies with <i>Chlorella</i>	174 174
vulgaris4. 3. 2. Physical characteristics of fortified cookies with <i>Chlorella</i> vulgaris	175
4. 3. 3. Color measurements of fortified cookies with <i>Chlorella vulgaris</i>	177
4. 3. 4. Texture analysis of fortified cookies with <i>Chlorella vulgaris</i>	179
4. 3. 5. Sensory evaluation of fortified cookies with <i>Chlorella vulgaris</i>	182
SUMMARY	

REFERENCES

ARABIC SUMMARY