Recent updates of Basic and Advanced Airway Management during Anesthesia in Adults

An Essay

Submitted for Partial Fulfillment of Master Degree in Anesthesia

By

Keryllos Mamdouh Massoud Twadrous M.B, B.CH, Menia University

Under Supervision of

Prof. Dr. Mohamed Sidky Mahmoud Zaki

Professor of Anesthesia, ICU and Pain Management Faculty of Medicine -Ain Shams University

Dr. Sahar Mohamed Talaat

Assistant Professor of Anesthesia, ICU and Pain Management Faculty of Medicine-Ain Shams University

Dr. Mostafa Mohamed Serry

Lecturer of Anesthesia, ICU and Pain Management Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2017

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed**Sidky Mahmoud Zaki, Professor of Anesthesia, ICU and Pain Management - Faculty of Medicine-Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Sahar Mohamed Talaat,** Assistant Professor of Anesthesia, ICU and Pain Management, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mostafa Mohamed Serry**, Lecturer of Anesthesia, ICU
and Pain Management, Faculty of Medicine, Ain
Shams University, for his great help, active
participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Keryllos Mamdouh Massoud Ewadrous

List of Contents

Title	Page No.
List of Tables	4
List of Figures	5
List of Abbreviations	7
Introduction	1
Aim of the Work	3
Upper Airway Anatomy	4
Assessment of the Airway	30
Basic Airway Management	59
Advanced Airway Management	80
Summary	147
References	150
Arabic Summary	

List of Tables

Table No.	Title Page	No.
Table (1):	Prevalence of difficult airway	
	management	31
Table (2):	Predictors of difficult face mask	
	ventilation	35
Table (3):	Predictors of difficult Direct	
	Laryngoscopy	
Table (4):	Predictors of difficult GlideScope use	
Table (5):	Predictors of difficult supraglottic device	
Table (6):	Predictors of difficult Cricothyroidotomy	37
Table (7):	Disease states associated with difficult	
	airway management	38
Table (8):	Stop bang assessment for obstructive	
	sleep apnea	50
Table (9):	LEMON airway assessment	53
Table (10):	Assignment of numerical grade to each	
	factor (V, I, and A)	55
Table (11):	Summation of the 3 grades results in a	
	cumulative VIA score from 0 to 6. This	
	score will determine the most	
	appropriate option to secure the airway	56
Table (12):	Lessons learned from the NAP4 study	58
Table (13):	Classification of Difficult Mask	
	Ventilation	78
Table (14):	Sizes of extraglottic airway devices:	86
Table (15):	Another classification for sizes of	
	extraglottic airway devices	87
Table (16):	Risk factors associated with uLMA	
	failure	88
Table (17):	Sequence for LMA exchange in at-risk	
	extubation	88
Table (18):	Suggested contents of the portable	
	storage unit for difficult airway	
	management	89
Table (19)	Non-numerical Cormack_Lehane system	

List of Figures

Fig. No.	Title Page	e No.
		_
Fig. (1):	The lateral nasal wall	
Fig. (2):	The oral cavity	
Fig. (3):	Posterior view of the tongue	
Fig. (4):	The Larynx (superior)	20
Fig. (5):	The cricoid cartilage and cricothyroid	
T! (0)	ligament (membrane)	22
Fig. (6):	Anatomy (a) and action (b) of the	2.0
F: (F)	cricothyroid muscle on the vocal cords	26
Fig. (7):	Trachea and upper tracheobronchial	00
F. (0)	tree	29
Fig. (8):	Flowchart forms part of the DAS	
	guidelines for unanticipated difficult	
	intubation in adults 2015 and should be	94
Fig. (0).	used in conjunction with the text	
Fig. (9): Fig. (10):	Modified Mallampati classification Oral airways (commonly made of	40
Fig. (10):	plastic)	63
Fig. (11):	Oral airways: Ovassapian, split	00
11g. (11).	Berman, Williams, Guedel, cuffed	
	oropharyngeal airway	65
Fig. (12):	Different sizes of nasopharyngeal	
1 18. (12/1	airways	67
Fig. (13):	Tulip GT airway and Guedel airway	
Fig. (14):	Anesthesia resuscitation masks	
Fig. (15):	The original LMA Classic	
Fig. (16):	LMA ProSeal	
Fig. (17):	LMA Fastrach	
Fig. (18):	LMA Flexible	
Fig. (19):	LMA Supreme	96
Fig. (20):	LMA CTrach	
Fig. (21):	Laryngeal Tube and Laryngeal Tube S	100
Fig. (22):	Cobra Perilaryngeal Airway	
Fig. (23):	SLIPA	102

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (24):	I-Gel Airway	104
Fig. (25):	Air-Q Laryngeal Airway	
Fig. (26):	Combitube	
Fig. (27):	Easy tube	108
Fig. (28):	Viewmax laryngoscope	
Fig. (29):	Truview EVO2	
Fig. (30):	The Bullard laryngoscope	
Fig. (31):	WuScope fiberoptic laryngoscope w	
3	double-lumen tube	
Fig. (32):	Flexible Fiberscope	
Fig. (33):	Karl Storz DCI System	
Fig. (34):	GlideScope	
Fig. (35):	McGrath	
Fig. (36):	Airway Scope	
Fig. (37):	Airtrag	
Fig. (38):	TrachView Intubating Videoscope	
Fig. (39):	(A) Endotracheal tube being deploy off rigid stylet with standard camb orientation. (B) Endotracheal tube being deployed off rigid stylet with rever	ved per ing rse
	camber orientation.	143

List of Abbreviations

Abb.	Full term
ADDC	Adult Doonington, Dietness Cundness
	Adult Respiratory Distress Syndrom
	American Society of Anesthesiologists
AWS	• •
B.U.R.P	$Backwards ext{-}Upwards ext{-}Rightwards ext{-}Pressure$
<i>BLS</i>	Basic Life Support
<i>BMI</i>	Body mass index
<i>BMV</i>	Bag-Mask Ventilation
<i>CAFG</i>	Canadian Airway Focus Group
CICO	Can't intubate, can't oxygenate
<i>CICV</i>	can't intubate can't ventilate
<i>COPD</i>	$Chronic\ Obstructive\ Pulmonary\ Disease$
<i>CSF</i>	Cerebrospinaal fluid
<i>DAM</i>	Difficult Airway Management
DAS	Difficult airway society
DCI	Display Control Interface
DL	Direct laryngoscope
<i>DMV</i>	Difficult mask ventilation
DTI	$Difficult\ trackeal\ intubation$
<i>ECG</i>	Electrocardiogram
<i>ETC</i>	$Esophagotra che al\ Combitube$
ETI	$Endot racheal\ in tubation$
<i>ETT</i>	Endotracheal tube
<i>EzT</i>	Easy Tube
<i>F</i>	French
FAST	Flexible Airway Scope Tool
Fastrach-D, LMA-D.	Fastrach laryngeal intubation mask disposable

List of Abbreviations (Cont...)

Abb.	Full term
<i>FFE</i>	Flexible Fibreoptic endoscopy
FFI	Flexible Fibreoptic intubation
FPS	First-Pass Success
<i>ICP</i>	Intracranial pressure
<i>ID</i>	Inch diameter
<i>IDS</i>	Intubation Difficulty Scale
<i>I-Gel</i>	Intersurgical gel
<i>KTP</i>	Potassium titanyl phosphate
LCD	Liquid crystal display
<i>LMA</i>	Laryngeal mask airway
<i>MAC</i>	$Minimal\ alveolar\ concentration$
<i>MMP</i>	Mallampati
MV	Mask ventilation
NAP4	$4^{th}\ National\ Audit\ Project$
<i>NPA</i>	Nasopharyngeal airway
<i>NPO</i>	Nothing per oral
<i>OPA</i>	Oropharyngeal airway
<i>OSA</i>	Obstructive sleep apnea
<i>PEAE</i>	Preoperative endoscopic airway evaluation
PEEP	Positive end-expiratory pressure
POGO	Percent of glottic opening
<i>RCT</i>	$Randomised\ controlled\ trial$
<i>RPS</i>	Retropharyngeal space
<i>RUB</i>	The right upper lobe bronchus
S	Second
<i>SAD</i>	Supraglottic airway device
SGA	Supraglottic airway

List of Abbreviations (Cont...)

Abb.	Full term
SLIPA	Streamlined Liner of Pharyngeal Airway
SOS	Seeing Optical Stylet
<i>TMD</i>	Thyromental distance
Tulip GT	Tulip Guedel tube
TV	Television
<i>VIP</i>	Vasoactive intestinal peptide
<i>VL</i>	. Video laryngoscope
VT	. Tidal volume

Introduction

In the early 1990s, failed oxygenation was found to be the main cause of death during anesthesia, since then, several major efforts have been made to reduce the incidence; the societies for airway management were founded, guidelines about difficult airway management have been formulated, new reliable airway devices have been developed, and oximetry and capnography have become widely available (Asai and O'Sullivan, 2016).

Airway-related complications are one of the commonest causes for anesthesia-related morbidities and mortalities, while improvements in patient monitoring, airway devices, and clinical protocols and training have reduced the risk associated with a difficult airway, these changes have not reduced the incidence of unexpected difficult airway in clinical practice (Cattano et al., 2013).

A difficult airway is a clinical situation in which a conventionally trained anesthesiologist experiences difficulty with facemask ventilation, tracheal intubation, or both (*Hagberg*, 2014).

Difficult or delayed intubation, failed intubation, and 'can't intubate can't ventilate' (CICV) accounted for 39% of all events and events during anesthesia. Aspiration then extubation

problems followed tracheal intubation in frequency of reported complications (*Cook et al.*, 2011).

From the 1st guidelines on the management of the airway that were published by the American Society of Anesthesiologists (ASA) till the last one, several types of airway devices are included. Together with other devices that have been developed in the past years, represent an important subject that an anesthesiologist should know (*Caplan et al., 2003*).

Management of the airway is continually evolving, with a plethora of new devices continuously being developed. In the midst of these new technologies, the basics of airway management sometimes get overlooked. Things such as upper airway assessment, optimal head positioning, manual maneuvers to open the upper airway, use of simple airway adjuncts, and expert bag- mask ventilation (BMV) are all basic, essential, and potentially life-saving respiratory therapy skills (*Davies et al.*, 2014).

Expertise and familiarity, as well as the benefits and limitations of a device, influence airway management strategies. Although most anesthetists are keen to play with new toys, once the novelty wears off they will only use airway management tools regularly if they are effective, the successful use of any advanced airway management device depends on operator skill, judgment and patient selection (*Rajendram and Kale, 2016*).

AIM OF THE WORK

The aim of this essay is to identify and discuss the upper airway anatomically and physiologically, knowing the different methods and scores used for evaluating the airway, and review basic & advanced airway devices properties then show their uses in different aspects in anesthesia.

Chapter 1

UPPER AIRWAY ANATOMY

Knowledge of anatomy is essential to the study of airway management. First, anatomical considerations are helpful in diagnosing certain problems, such as the position of a foreign body in a patient with airway obstruction. Second, since some procedures involved in establishing and maintaining an airway are performed under emergency conditions, little if any time may be available for reviewing anatomy. Third, in many procedures involving the airway, such as tracheal intubation, anatomical structures are only partially visible. As a result, one must recognize not only the structures in view but also their spatial relationship to the surrounding structures. This chapter reviews basic airway anatomy, discusses some clinical correlates. Normal respiration involves a highly detailed neurophysiologic process that results in the exchange of inspired and expired air through various anatomic structures. An understanding of these structures is important to the clinician involved in maintaining or reestablishing the normal airway. The following anatomic discussion focuses on the features crucial for the establishment and maintenance of a tracheal airway (Isaacs and Sykes, 2002).

1-The Nose

The nasal profile consists of the root, dorsum, tip and columella, with the other sections of the nose consisting of the ala, alar sulcus and nostrils. These features are supported by underlying nasal structure consisting, besides bone, of cartilage, muscles, subcutaneous fat and possibly a ligament. The nasal skeleton consists of the nasal bones and the frontal processes of the maxillae. The anterior nasal spine projects from the medial superior border of the maxilla in the nasal cavity floor and is variable in shape and length. Internally, although the nasal cavity is formed by several bones, only the nasal bones, maxillae, vomer and ethmoid bones support the nasal cartilaginous skeleton. This comprises several cartilages, the septal cartilage, the bilateral (greater) alar and lateral cartilages and varying numbers of lesser alar and sesamoid cartilages (Anderson et al., 2008).

The nasal septum supports the other cartilages and soft tissues of the nose and strengthens the nasal framework by dividing the nasal cavity in two. Structurally, the vomer and the perpendicular plate of the ethmoid, in conjunction with the septal cartilage, combine to form the nasal septum. Anteriorly, the septal cartilage attaches inferiorly to the anterior nasal spine and superiorly to the lateral cartilages. They are continuous with the septal cartilage along the superior border, separating anteriorly to allow movement during respiration. The lateral cartilages attach to the inferior surface of the nasal bones and

may also attach to the frontal process of the maxilla. The position and shape of the alar cartilages is influenced by the height of the nasal septum, although these cartilages do not attach directly to the maxilla. The unique shape of the medial and lateral crura of the alar cartilage forms the columella, the nasal tip in conjunction with the interdomal fat pad, and the outer nostril walls. Between the lateral crura and the frontal process of the maxilla, below the inferior edge of the upper lateral cartilages in the intercartilaginous area are the small lesser alar cartilages (Anderson et al., 2008).

The nose has a number of important functions, including: respiration, olefaction, filtration, humidification, and is a reservoir for secretions from the paranasal sinuses and the nasolacrimal ducts. Head injury patients should be examined about nasal discharge, which may be cerebrospinal fluid (CSF). Nasotracheal intubation and the passage of nasogastric tubes are relatively contraindicated in the presence of basal skull fractures (*Benumof and Sniderson*, 1999).

The lateral walls have a bony framework attached to which are three bony projections referred to as conchae or turbinates (Fig 1). The upper and middle conchae are derived from the medial aspect of the ethmoid; the inferior concha is a separate structure. There are a number of openings in the lateral nasal walls that communicate with the paranasal sinuses and the nasolacrimal duct. A coronal section of the nose and mouth shows the location and relationships of the nasal structures