## Role of Ultrasound in Pediatric Anesthesia

#### Essay

Submitted in partial fulfillment of the master degree in Anesthesiology

#### By

#### Ahmed Abdelmoula Abdelsalam

M.B,B.ch.
Faculty of Medicine – Cairo University

Under Supervision of

# Prof. Dr. Nabila Abdelaziz Fahmy

Professor of Anesthesiology, Surgical ICU and Pain Management Faculty of Medicine – Ain Shams University

### **Prof. Dr. Hatem Said Abdelhamid**

Professor of Anesthesiology, Surgical ICU and Pain Management Faculty of Medicine – Ain Shams University

## **Dr. Rania Magdy Mohammed Ali**

Assistant Professor of Anesthesiology, Surgical ICU and Pain Management
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University **2017** 



سورة البقرة الآية: ٣٢



First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I would like to express my sincere gratitude to **Prof. Dr. Nabila Abdelaziz Fahmy,** Professor of Anesthesiology, Surgical ICU, and Pain Management, Faculty of Medicine – Ain Shams University, under her supervision, I had the honor to complete this work, I am deeply grateful to her for her professional advice, guidance and support. I really have the honor to complete this work under her supervision.

My deep gratitude goes to **Prof. Dr. Hatem Said**Abdelhamid, Professor of Anesthesiology, Surgical ICU, and Pain
Management, Faculty of Medicine – Ain Shams University, for
his valuable efforts and tireless guidance and meticulous
supervision throughout this work.

I can't forget to thank **Dr. Rania Magdy Mohammed Ali,**Assistant Professor of Anesthesiology, Surgical ICU, and Pain
Management, Faculty of Medicine – Ain Shams University, for
the efforts and time she has devoted to accomplish this work

Last but not least, I like to thank all my Family, especially my Parents and my Wife, for their kind care, help and encouragement.

## **List of Contents**

| Subject                                                                            | Page No. |
|------------------------------------------------------------------------------------|----------|
| List of Abbreviations                                                              | i        |
| List of Tables                                                                     | iv       |
| List of Figures                                                                    | vi       |
| Introduction                                                                       | 1        |
| Aim of the Work                                                                    | 3        |
| Chapter (1): Physical Principles of Ultrasound.                                    | 4        |
| Chapter (2): Techniques of Ultrasound guided<br>Regional anaesthesia in Pediatrics | 13       |
| Chapter (3): Trans esophageal ECHO                                                 | 63       |
| Chapter (4): The Use of Ultrasound in Vascular Access                              |          |
| Summary                                                                            | 116      |
| References                                                                         | 118      |
| Arabic Summary                                                                     | <u> </u> |

#### **List of Abbreviations**

## Abbr. Full-term

**ASD** : Atrial septal defect

**AV** : Aortic valve

**AV** : Atrio-ventricular

**CABG** : Coronary artery bypass graft

**CFD** : Colour flow Doppler

**CNS** : Central nervous system

**CPB** : Cardiopulmonary bypass

**CSF** : Cerebrospinal fluid

**CT** : Computerized tomography

**CVC** : Central venous catheter

**CVP** : Central venous pressure

**D**: Dimensional

**ECG** : Electrocardiogram

**IJV** : Internal jugular vein

**IVC** : Inferior vena cava

**IVS** : Interventricular septum

**LA** : Left atrium

**LA** : Local anesthetics

**LV** : Left ventricle

**LVIDD** : Left ventricular internal diastolic dimension

**LVISD** : Left ventricular systolic dimension

MAC : Minimal alveolar concentration

**MIDCAB**: Minimally invasive direct coronary artery bypass

**MR** : Mitral regurgitation

**MRI** : Magnetic resonance imaging

**MV** : Mitral valve

**OPCAB** : Off pump coronary artery bypass

**PA** : Pulmonary artery

**PAC**: Pulmonary artery catheter

**PICCs**: Peripherally inserted central catheters

**PNBs** : Peripheral nerve blocks

**PRF** : Pulse repetition frequency

**PTCA**: Percutaneous transluminal coronary angioplasty

**RA** : Right atrium

**RV** : Right ventricle

**SAS** : Subaortic stenosis

**SV** : Stroke volume

**SVC** : Superior vena cava

**SWMA** : Segmental wall motion abnormalities

**TEE** : Transesophageal echocardiography

**TGC**: Time gain compensation

**US** : Ultrasound

**VSD** : Ventricular septal defect

bst

# **List of Figures**

| Figure No           | . Title Page C                                               | No. |
|---------------------|--------------------------------------------------------------|-----|
| Figure (1):         | Characteristic appearance of peripheral nerves by ultrasound | 11  |
| <b>Figure (2):</b>  | Cross sectional nerve block technique                        | 16  |
| Figure (3):         | In line nerve block technique                                | 17  |
| <b>Figure (4):</b>  | Interscalene approach for brachial plexus block              | 24  |
| <b>Figure (5):</b>  | Supraclavicular approach for brachial plexus block           | 28  |
| <b>Figure (6):</b>  | Lateral infraclavicular approach for brachial plexus block   | 31  |
| <b>Figure (7):</b>  | Axillary approach for brachial plexus block                  | 35  |
| <b>Figure (8):</b>  | Radial nerve block                                           | 38  |
| Figure (9):         | Ulnar nerve block                                            | 39  |
| <b>Figure (10):</b> | Median nerve block                                           | 40  |
| <b>Figure</b> (11): | Psoas compartement block                                     | 42  |
| <b>Figure (12):</b> | The 3 in 1 block                                             | 46  |
| <b>Figure (13):</b> | Selective saphenous nerve block                              | 48  |
| <b>Figure (14):</b> | Subgluteal approach for sciatic nerve block                  | 52  |
| <b>Figure (15):</b> | Midfemoral approach for sciatic nerve block                  | 53  |
| <b>Figure (16):</b> | Popliteal nerve block                                        | 55  |
| <b>Figure (17):</b> | Ilioinguinal/Iliohypogastric nerve block                     | 58  |
| <b>Figure (18):</b> | Adult, minimulti and micromulti TEE probe                    | 66  |
|                     |                                                              |     |

| 6           | e f |
|-------------|-----|
| <b>#</b> 7. | * . |

| <b>Figure</b> (19): | Continuous wave flow velocity measurement in pulmonary artery in a multiplane angle of 102°                                                                                |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure</b> (20): | Ventricular septal defect and overriding aorta in tetralogy of Fallot in a multiplane angle of 108°                                                                        |
| Figure (21):        | Pulmonary artery in a multiplane angle of 48°                                                                                                                              |
| <b>Figure (22):</b> | CW Doppler VTI measurement through a normal aorticvalve in a transgastric long-axis view; multiplane angle 101°                                                            |
| <b>Figure (23):</b> | Color Doppler flow in left coronary artery in a multiplane angle 14°                                                                                                       |
| Figure (24):        | Transgastric long-axis view of the aortic valve in a multiplane angle 105°                                                                                                 |
| Figure (25):        | Three-dimensional images. a 3D view from the left atrium on an abnormal mitral valve. b Shows how the volume and ejection fraction can be calculated based on a 3D dataset |
| <b>Figure</b> (26): | Three primary axes of interrogation consists of basal short axis, long axis and transgastric short axis                                                                    |
| <b>Figure</b> (27): | Basal short axes view showing aorta, right pulmonary artery (RPA), superior vena cava (SVC)                                                                                |
| <b>Figure (28):</b> | Short axis view showing aortic valve (AV), left atrium (LA), right artrium (RA) and right ventricle (RV)                                                                   |

| 6 | e | f  |
|---|---|----|
|   | æ | Æ. |

| <b>Figure (29):</b> | Four chamber long axis view LA – left atrium, RA- right atrium, RV- right ventricle, LV-left ventricle                                                                                                                  | 78    |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>Figure (30):</b> | Five chamber long axis view. LA – left atrium, RA- right atrium, RV- right ventricle, LV-left ventricle, AO- aorta                                                                                                      | 78    |
| <b>Figure (31):</b> | Long axis view showing aortic and mitral valve LA – left atrium, MV- mitral valve, AV- aortic valve, LV-left ventricle, AO-aorta                                                                                        | 79    |
| <b>Figure (32):</b> | Transgastric short axis view showing left ventricle (LV) and right ventricle (RV) IVS-Inter ventricular septum, AW                                                                                                      | 79    |
| <b>Figure (33):</b> | Short axis view showing descending aorta                                                                                                                                                                                | 80    |
| <b>Figure (34):</b> | View showing arch of aorta                                                                                                                                                                                              | 80    |
| <b>Figure (35):</b> | Linear array transducer; large footprint (38 mm)                                                                                                                                                                        | 95    |
| <b>Figure (36):</b> | Linear array transducer with needle guide attachment                                                                                                                                                                    | 96    |
| <b>Figure (37):</b> | Transverse images of the right side of the neck demonstrate (a) the right subclavian vein draining into the right brachiocephalic vein (arrow) and (b) the puncture needle within the lumen of the brachiocephalic vein | 99    |
| <b>Figure (38):</b> | Transverse image of the neck demonstrates the presence of multiple enlarged collateral veins, several of which would be amenable to ultrasound-guided puncture                                                          | . 100 |
| <b>Figure (39):</b> | Transverse image of the right basilic vein and medial to the brachial artery and deep to the belly of biceps                                                                                                            | . 101 |

| 6 |   | , |
|---|---|---|
|   | 8 |   |

| Figure (40):          | With the linear probe aligned with the long axis of the needle, the tip is clearly seen within the soft tissues of the neck, approaching the right internal jugular vein                                                                                                                                                        | 103 |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Figure (41):</b>   | The puncture needle is visualized in transverse section, so that the echogenic needle tip is seen indenting the wall of the common femoral vein                                                                                                                                                                                 | 104 |
| <b>Figure (42):</b> E | By sweeping the probe in an arc between skin puncture site and vessel, the trajectory of the needle is visualized within the soft tissues prior to puncture of the vessel, allowing small adjustments to be made to the path of the needle                                                                                      | 104 |
| <b>Figure (43):</b>   | Following multiple previous attempts at central venous access, a collateral vein in the left side of the neck has been punctured under ultrasound guidance                                                                                                                                                                      | 105 |
| Figure (44):          | Ultrasound demonstrates the presence of (a) calcified thrombus within the left internal jugular vein and (b) a small irregular right internal jugular vein, smaller than the adjacent carotid artery, suggesting that the distal internal jugular vein may be tortuous, and narrowed or occluded                                | 106 |
| Figure (45):          | Ultrasound images illustrate that (a) by turning the linear transducer to image the vessel in the transverse plane, the needle is correctly placed centrally within the vessel lumen, (b) the needle tip and guide wire are clearly visualized within the lumen of the right brachiocephalic vein during guide wire advancement | 107 |

| h | £ | f |
|---|---|---|
|   |   |   |

| <b>Figure (46):</b> | Following an unsuccessful attempt at puncture of the left internal jugular vein 107                                                                                                                                                                   |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure (47):        | Ultrasound demonstrates (a) the tip of a 4F PICC lying within the right brachiocephalic vein and (b) echogenic, oedematous soft tissues surrounding a central venous catheter in a patient with venous congestion secondary to the catheter placement |
| <b>Figure (48):</b> | Ultrasonography clearly defines the position of the in-growth cuff (a) on an indwelling central venous catheter and (b) following retention of the cuff within the subcutaneous tissues when the catheter was removed                                 |
| <b>Figure (49):</b> | The real time out-of-plane method.  Needling technique; guide wire insertion and sonographic view                                                                                                                                                     |
| <b>Figure (50):</b> | The real time out-of-plane method.  Needling technique; guide wire insertion and sonographic view                                                                                                                                                     |
| <b>Figure (51):</b> | The indirect method. Long axis ( <i>left</i> ); short axis                                                                                                                                                                                            |
| <b>Figure (52):</b> | Indirect technique for radial artery catheterization                                                                                                                                                                                                  |
| <b>Figure (53):</b> | Real-time method of radial artery                                                                                                                                                                                                                     |

#### **Abstract**

**Background:** Ultrasound is a rapidly rising and flourishing technology invading the local anaesthesia field, as direct visitualization of the nerves and surrounding structures improves the outcome of most techniques especially in pediatric patients due to small field, difficult surface anatomical markings and very small structures. **Aim of the Work:** To discuss role of ultrasound in pediatric anesthesia.

Key words: Ultrasound, pediatric anesthesia

#### INTRODUCTION

Pediatric anesthesia is a challenge for an anesthesiologist not only due to physiological differences that require wide medical knowledge but also due to anatomical differences that require fine skills to handle techniques needed for anesthesia as peripheral and central venous cannulation, arterial circulation and peripheral and central neuro-axial blocks. Being blind and depend on surface anatomy and individual skills, these techniques are difficult and may carry risk of failure or complications. The use of ultrasound and an aid for accurate administration of local anesthetics is gaining in popularity for regional conventional anesthesia over landmark-based techniques and neurostimulation (Marhofer et al., 2014).

Ultrasound imaging is rapidly emerging as one of the most promising tools as the size, depth and precise location of nerves in their surrounding environment can be determined, depending on correct interpretation. Viewing the moving needle once inserted at an appropriate angle and within the plane of the ultrasound, probe, as well as the spread of local anesthetic provides valuable assistance to the anesthesiologist when performing regional anesthesia (*Pietrini et al.*, 2011).



Regional anesthesia plays an important role in the perioperative management of children and particularly of babies and neonates, where one should avoid or minimize airway manipulation whenever possible. Perfect block techniques are required for an improved perioperative outcome. Interestingly, many peripheral regional techniques are not adequately described, resulting in complications and low success rates whereas central techniques are welldescribed with ensuing high success rates (Rapp et al., 2013).

Although it has not yet been sufficiently described in an "evidence-based" manner, ultrasonographic guidance for a broad spectrum of regional anesthetic techniques results in safe and effective blocks. Recent publications have illustrated the use of ultrasonography for central and peripheral blocks for children also. The initial results of encouraged scientific study groups to increase their efforts to develop new ultrasound-guided regional techniques targeted towards children, in an effort to introduce these techniques into clinical practice in the future (Schafhalter-Zoppoth et al., 2014).