Plasma ghrelin levels in non smokers and passive as well as active smokers: relation to urinary cotinine

THESIS

Submitted for Fulfillment for the Requirements of M.Sc. in Medical Biochemistry

Presented by
Manal Ewais Hassan
(M.B.B.Ch, Cairo University)

Supervised by

Prof. Dr. Gamil Amin Tawadrous

Professor of Medical Biochemistry
Faculty of Medicine
Cairo University

Dr. Amira Ahmed Hassouna

Assistant Professor of Medical Biochemistry
Faculty of Medicine
Cairo University

Dr. Ghada Mahmoud Abd El-Aziz

Lecturer of Medical Biochemistry

Faculty of Medicine

Beni -Sueif University

PRINCIPAL SUPERVISOR

Prof. Dr. Gamil Amin Tawadrous

Professor of Medical Biochemistry
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2010

Abstract

Objective: To evaluate the effect of smoking on plasma ghrelin levels in passive and active smokers and to correlate their levels with body mass index and urinary cotinine.

Patients and Methods: The present study included 85 healthy male subjects, divided into three groups; Group I (n=20) non smokers control group Group II (n=20) passive smokers and Group III (n=45) active smokers. For all subjects, the following investigations were performed; plasma glucose, alanine aminotransferase (ALT), creatinine, urinary cotinine by RIA and plasma ghrelin by ELISA. In addition to history taking and physical examination to exclude any organic disease. Also, determination of body weight and measurement of height were done to calculate body mass index .

Results: The mean plasma ghrelin levels in active smokers were significantly lower vs non smokers and passive smokers (p<0.001) while, passive smokers showed no significant difference in ghrelin levels compared to non smokers(p >0.1).Also, a significant negative correlations were observed between plasma ghrelin levels weight (r = -0.472, p<0.005), body mass index (r = -0.798, p<0.001), systolic blood pressure (r = -0.671, p<0.001), diastolic blood pressure (r=-0.562, p>0.001), fasting plasma glucose(r=-0.334, p<0.05), postprandial plasma glucose (r = -0.396, p<0.02), plasma creatinine (r = -0.575, p<0.001)and (r=-0.457, p<0.05). plasma ALT activity Conclusion: Cigarette smokers had significantly lower plasma ghrelin level, a mechanism which might have a role in long term regulation of body weight.

Key words: Ghrelin, BMI, Cigarette smoking and Nicotine.

Acknowledgment

First and foremost thanks to "Allah" who is the most beneficial and most merciful

It is a great pleasure to express my profound gratitude and deep thanks to **Prof. Dr. Gamil Amin Tawadrous**, Professor of Medical Biochemistry for his keen supervision, generous cooperation and great help to end this work.

I wish to express my profound thanks to **Dr. Amira Ahmed**Hassouna, Assistant professor of Medical Biochemistry, faculty of medicine, Cairo University for her careful supervision, valuable cooperation and encouragement.

I am thankful to **Dr. Ghada Mahmoud AbdEl-Aziz** Lecturer of medical biochemistry, Faculty of medicine Beni-Sueif University for her support and help during this work.

My deep thanks and grateful acknowledgement to **Dr. Amal Abd El-Messih Aziz**, Assistant consultant in Clinical Pathology Department,
Faculty Of Medicine Cairo University for her help in the practical part of the thesis and analysis of results.

I would like to express my deep thanks to all staff members in Medical Biochemistry Department and Dr. Mona Serkees Head of Biochemistry Department for their help and support. And finally my deepest thanks to my family for all their help and support.

List of Abbreviations

ACTH Adrenocorticotrophic hormone

AFP Alpha fetoprotein

AGRP Agouti related protein

AIDS Acquired immune deficiency syndrome

AMPK Adenosine monophosphate activated kinase

AN Anorexia nervosa

AN-BP Anorexia nervosa – binge eating/purging type

AN-R Anorexia nervosa –restricting type

BMI Body mass index

BN Bulimia nervosa

BN-P Bulimia nervosa –purging type

CHF Chronic heart failure

c DNA Complementary deoxy ribonucleic acid

cAMP Cyclic adenosine mono phosphate

CLD Chronic liver disease

CNS Central nervous system

COPD Chronic obstructive pulmonary disease

CRC Cancer Research Campaign

CPFs Cancer potency factors

EC Enterochromaphin

ED Erectile dysfunction

ETS Environmental tobacco smoke

GABA Gamma amino butyric acid

GFR Glomerular filtration rate

GH Growth hormone

GHR Growth hormone receptors

GHRH Growth hormone releasing hormone

GHRP-6 Growth hormone releasing peptide-6

GHS Growth hormone secretagogues

GPCR G protein coupled receptors

HCC Hepatocellular carcinoma

HD Hemodialysis

HDL High density lipoprotein

HPV Human papilloma virus

ICAM Intracellular adhesion molecules

IESR Institute of Environmental Science and Research

IGF-1 Insulin - like growth factor-1

IL Interleukin

IQ Intelligence quotient

IRS-1 Insulin receptor substrate -1

LVEF Left ventricular ejection fraction

MAO Mono amine oxidase

mRNA Messenger ribonucleic acid

NAFLD Non alcoholic fatty liver disease

NAS National academy of sciences

NDMA N-nitrosodimethylamine

NIH National institute of health

NNN N- nitrosonornicotine

NP N- nitrosopyrrolidine

NPY Neuropeptide Y

OGTT Oral glucose tolerance test

PAH Polynuclear aromatic hydrocarbon

PD Peritoneal dialysis

PEPCK Phosphoenol pyruvic carboxykinase

PM Post meridiem

PNS	Peripheral nervous system
-----	---------------------------

PREP Potential reduce –exposure products

PRL prolactin

PVN Paraventricular nuclei

RCC Renal cell carcinoma

REL Reference Exposure level

T2DM Type 2 diabetes mellites

T.I.A Transient ischemic attacks

TM Trans membrane

TSH Thyroid stimulating hormone

USA United States of America

WHO World health organization

List of Tables

Tables		Pages
1	The Ghrelin production/secretion regulation	22
2	Combined list of priority chemicals in cigarette smoke	47
3	Cancer potency factors and reference exposure levels used	48
	for composite hazard estimates	
4	Clinical data of the investigated non-smokers subjects	104
5	Clinical data of the investigated passive-smoker subjects	105
6	Clinical data of the investigated active smoker subjects	106-107
7	Plasma levels of glucose(fasting as well as 2 hours after	108
	meal),creatinine,ALT activity,total ghrelin and urinary	
	cotinine in non-smokers.	
8	Plasma levels of glucose (fasting as well as 2 hours after	109-110
	meal), creatinine, ALT activity, ghrelin and urinary cotinine	
	in passive-smokers.	
9	Plasma levels of glucose (fasting as well as 2 hours after	111-112
	meal), creatinine, ALT, ghrelin and urinary Cotinine in	
	active-smokers.	
10	Correlations between plasma ghrelin levels with the clinical	114
	data and the levels of the investigated parameters in non-	
	smoker, passive as well as active smoker subjects.	

List of Figures

Figures		Pages
1	Differential transport of ghrelin, des-octanoyl mouse ghrelin, and human ghrelin across the blood-brain barrier.	5
2	Dendrogram alignment of ghrelin receptor (GHS-R) and other GPCRs.	12
3	Regulation of growth hormone release from the pituitary.	16
4	Hypothalamic neural networks involving appetite- regulating peptides.	26
5	Describes the processing from the human ghrelin gene to an active peptide.	91
6	Body weight, body mass index of non-smokers, passive as well as active smokers	115
7	Mean systolic and diastolic blood pressure of non- smokers, passive as well as active smokers	116
8	Mean fasting (FPG) and postprandial plasma glucose (PPPG)	117
9	Mean plasma creatinine levels and alanine transaminase (ALT) activities of non-smokers, passive as well as active smokers	118
10	Mean plasma ghrelin and urinary continine levels of non smokers, passive as well as active smokers	119
11	Correlation between plasma ghrelin levels and body weight of passive smokers	120
12	Correlation between plasma ghrelin levels and body weight of active smokers	120
13	Correlation between plasma ghrelin levels and body mass index of non smokers	121
14	Correlation between plasma ghrelin levels and body mass index of passive smokers	121
15	Correlation between plasma ghrelin levels and body mass index of active smokers	122
16	Correlation between plasma ghrelin levels and systolic blood pressure(S.B.P) of non smokers	123
17	Correlation between plasma ghrelin levels and systolic blood pressure(S.B.P) of passive smokers	123
18	Correlation between plasma ghrelin levels and systolic blood pressure (S.B.P) of active smokers	124

19	Correlation between plasma ghrelin levels and Diastolic	125
	blood pressure (D.B.P) of passive smokers	
20	Correlation between plasma ghrelin levels and Diastolic	125
	blood pressure (D.B.P) of active smokers	
21	Correlation between plasma ghrelin levels and fasting	126
	plasma glucose in non smokers	
22	Correlation between plasma ghrelin levels and fasting	127
	plasma glucose in passive smokers	
23	Correlation between plasma ghrelin levels and fasting	127
	plasma glucose in active smokers	
24	Correlation between plasma ghrelin levels and	128
	postprandial plasma glucose in non smokers	
25	Correlation between plasma ghrelin levels and	128
	postprandial plasma glucose in passive smokers	
26	Correlation between plasma ghrelin levels and	129
	postprandial plasma glucose in active smokers	
27	Correlation between plasma ghrelin levels and plasma	130
	creatininein non smokers	
28	Correlation between plasma ghrelin levels and plasma	130
	creatininein passive smokers	
29	Correlation between plasma ghrelin levels and plasma	131
	creatinine in active smokers	
30	Correlation between plasma ghrelin levels and plasma	131
	alanine transaminase (ALT) activities in non smokers	
31	Correlation between plasma ghrelin levels and plasma	132
	alanine transaminase (ALT) activities in passive smokers	
32	Correlation between plasma ghrelin levels and plasma	132
	alanine transaminase (ALT) activities in active smokers	

Introduction

Tobacco use is the leading preventable cause of death in most countries. Smoking cessation is an important strategy for reducing the morbidity and mortality associated with tobacco-related diseases. An inverse relationship between nicotine use and body weight has been reported, in which body weight tends to be lower among smokers than among nonsmokers. Smoking abstinence results in an increase in body weight for both males and females. Pharmacological treatment for smoking cessation attenuates weight gain. The importance of smoking cessation as a contributing cause of the current obesity epidemic has been little studied. Although the mechanisms are unclear, there is evidence that dopamine and serotonin are appetite suppressants. The administration of nicotine, regardless of the delivery system, acutely raises the levels of these neurotransmitters in the brain, reducing the need for energy intake and consequently suppressing appetite. In addition, nicotine has a direct effect on adipose tissue metabolism, influencing the rate of weight gain following smoking cessation. Leptin, ghrelin and neuropeptide Y are substances that might constitute factors involved in the inverse relationship between nicotine and body mass index (Chatkin and Chatkin, 2007).

Ghrelin is an important regulator of energy balance because it has been demonstrated to increase appetite and food intake and to modulate insulin secretion (*Ariyasu et al., 2001 and Egido et al., 2002*). Ghrelin is one of the numerous, recently described, molecules implicated in energy homestasis. It has been shown in rodents that subcutaneous administration of ghrelin causes weight gain through the increase in food

intravenous ghrelin injection in humans markedly enhances appetite and increases food intake (*Wren et al., 2001*). Thus, ghrelin is the first circulating hormone proven to stimulate food intake in man.

Ghrelin, a 28-amino acid peptide with octanoyl-modification at the third serine residue (Ser-3) was purified from stomach extract. Ghrelin is multifunctional peptide implicated in glucose and lipid metabolism, reproduction, gastrointestinal function, cardiovascular function, cellular proliferation, immunomodulation and bone physiology in addition to GH release, and food intake (*Hosoda et al., 2006*, *Kojima and Kangawa, 2005; Soares and Leite-Moreira, 2008*).

The relationships between cigarette smoking and body weight have attracted considerable attention because smokers showed a lower body weight than non-smokers. *Lee et al.* (2006) and many studies reported that smoking cessation increases body mass index and cause weight gain.

Aim of the Work

The present study aimed to investigate the plasma ghrelin levels in a group of healthy subjects who are active smokers, passive smokers and in a healthy group subjects who are non smokers and not exposed to tobacco smoke. Plasma ghrelin levels of all groups will be correlated to their urinary cotinine and also to their body mass index in order to evaluate the effect of smoking on plasma ghrelin levels which might have a role in the long term regulation of body weight.

Ghrelin

The growing family of synthetic growth hormone (GH) secretagogues (GHSs) (*Camanni et al.*, 1998) consist of peptides and non peptides structurally derived from metenkephalin and synthesized by Bowers and Collaborators in the early 1980 (*Bowers*, 1998 and *Momany et al.*, 1981). Since the peptidyl GHS have very low oral bioavailability and short half-life, several small non-peptidyl molecules have been designed which are less susceptible to degradation and have higher bioavailability. The spiroindolin derivative MK-0677 is a small non-peptidyl GHs with excellent oral bioavailability (*Smith et al.*, 1997).

Nomenclature:

The name ghrelin is based on "ghre," a word root in Proto-Indo-European languages for "grow," in reference to its ability to stimulate GH release. Ghrelin is the first known case of a peptide hormone modified by a fatty acid (*Kojima et al.*, 1999).

Structure of Ghrelin:

Ghrelin (lipopeptide) is a 28-residue peptide with an n-octanoyl modification at the hydroxyl group of the 3rd serine, rarely threonine, which is essential for binding to the growth hormone secretagogue receptor la (GHSRA-la), and n-octanoyl bearing ghrelin known as active ghrelin (acylated) (*Aydin*, 2007 and Kojima and Kanagawa, 2005). Deacylated ghrelin, however, is not totally inactive, has influence on cell

Ghrelin

proliferation and adipogenesis (*Aydin*, 2007), but in term of the "active" form may be more physiologically crucial.

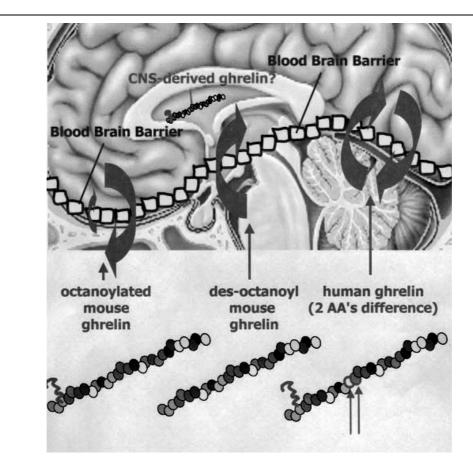


Fig. (1): Differential transport of ghrelin, des-octanoyl mouse gbrelin, and human ghrelin across the blood-brain barrier in mice (William et al., 2002).

Ghrelin was first described in 1999 by Kojima and Co-workers as the endogenous ligand for GHS-R. There is no structural homology between Ghrelin and synthetic ligands GHSs. Ghrelin is a peptide consisting of 28 amino acids and its sequence is highly conserved between various species. All characterized ghrelin derivatives are synthesized from prepro-ghrelin, the same ghrelin precursor of 117 amino acids, through alternative processing. The studies on activity of partially digested ghrelin and its derivatives revealed that the N-terminal portion, consisting of first 4-5 residues, is the active core of the molecule (Matsumoto et al.,2001). Ghrelin bioactivity is ensured by post-translational acylation with octanoic acid at its third serine residue

(Kojima et al., 1999 and Momany et al., 1981), a modification that permits to sustain ghrelin activity (Matsumoto et al., 2001 and Hosoda et al., 2003).

In rat stomach, a second type of ghrelin peptide has been purified and identified as des-Gln14 (*Hosoda et al.*, 2000a), ghrelin is identical to des-Gln14-ghrelin except for the deletion of Gln14, even retaining the *n*-octanoic acid modification.Des-Gln14-ghrelin has the same potency of activities as that of ghrelin.

Thus two types of active ghrelin peptide are produced in rat stomach: ghrelin and des-Gln14-ghrelin. However, des-Gln14-ghrelin is only present in low amounts in the stomach, indicating that ghrelin is the major active form. In addition, n-decenoyl (C10:1)-modified ghrelin exists in the stomach in small amounts.

Ghrelin, a stomach derived peptide, is the only known circulating orexigenic hormone. It is acylated with a medium-chain fatty acid by the enzyme ghrelin O-acetyltransferase (GOAT), and displays a broad range of activity, from central control of food intake to peripheral functions such as gastric emptying and insulin secretion (*Kirchner et al.*,2010).

In the course of purifying human ghrelin from the stomach, several minor forms of the peptide were isolated (*Hosoda et al., 2003*). These could be classified into four groups by the type of acylation observed at Ser3: nonacylated, octanoylated (C8:0), decanoylated (C10:0), and possibly decenoylated (C10:1). All peptides found were either 27 or 28 amino acids in length, the former lacking the COOH-terminal Arg28, and are derived from the same ghrelin precursor through two alternative pathways. As was the case in the rat, the major active form of human ghrelin is a 28-amino acid peptide with octanoylated Ser3. Synthetic octanoylated and decanoylated ghrelins stimulate the increase of