Mechanical and Physical Evaluation of Direct Composite Resin Restorations with Mineral Inserts

Thesis
Submitted to Biomaterials Department
Faculty of Dentistry
Ain Shams University

In partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Biomaterials Science

By

Dina Ahmed El- Refai

Assistant lecturer of Dental Materials
Biomaterials Department
Faculty of Dentistry
Ain Shams University
BDS: 1998 (Cairo University)

MDSc: 2004 (Ain Shams University)

Biomaterials Department Faculty of Dentistry Ain Shams University 2009

Supervisors

Prof. Dr. Ghada Atef Alian

Professor of Biomaterials
Head of Biomaterials Department
Faculty of Dentistry
Ain- Shams University

Ass. Prof. Dr. Ali Abdel-Motileb Ali

Associate Professor of Geology Geology Department Faculty of Science Cairo University

Dr. Dalia Ibrahim El- Korashy

Lecturer of Biomaterials Biomaterials Department Faculty of Dentistry Ain- Shams University

Acknowledgment

I would like to express my sincere respect, deepest thanks and highest appreciation to **Prof. Dr. Ghada Atef Alian**, **Professor of Dental materials and Head of Biomaterials Department**, **Faculty of Dentistry**, **Ain-Shams University**, for offering her time and experience and for guiding me throughout this work. Her generosity with her valuable ideas and advice will always be remembered with lot of gratitude. I have the honor to say that it was by her encouragement and unlimited support that this work had come to light.

All my respect and appreciation are expressed to Ass.Prof.Dr. Ali Abdel-Motelib Ali, Associate Professor of Geology, Geology Department, Faculty of Science, Cairo University, for his valuable supervision, generous help and unlimited scientific support to me throughout this work. His advice and helping will always be remembered and appreciated.

My deepest thanks and appreciation with personal respect and gratitude go to *Dr. Dalia Ibrahim El- Korashy*, *Lecturer of Dental Materials*, *Biomaterials Department*, *Faculty of Dentistry*, *Ain- Shams University*, for her continuous assistance, guidance and meticulous revision of the whole work. She was always there for solving my problems. I will never forget her moral and academic support to me.

I sincerely thank Ass.Prof.Dr. Ehab Saied Abdel- Hameed, Associate Professor of Oral Pathology, Oral Pathology Department, Faculty of Dentistry, Ain-Shams University, for his valuable and great effort in performing the statistical analysis of the data of the whole study. His support will never be forgotten.

Lot of thanks also go to *Dr. Mohamed Salah Abdel- Aziz*, *Lecturer of Dental Materials*, *Biomaterials Department*, *Faculty of Dentistry*, *Ain-Shams University*, for his valuable suggestions and advice concerning many aspects of the study.

I would like to thank the staff members of Stereomicroscopic Unit, Oral Pathology Department, Faculty of Dentistry, Ain Shams University and the staff members of Scanning Electron Microscopic Unit, Anatomy Department, Faculty of Medicine, Ain Shams University. Also, I would like to thank the staff members of Infra Red Analysis Unit, Faculty of Science, Cairo University. My thanks also go to the staff members of Crown and Bridge Laboratory, Faculty of Dentistry, Ain Shams University for their fruitful help.

Finally, I wish to express my respect and appreciation to all those who gave me a hand throughout the course of this work with special thanks to all the respectable members of Biomaterials Department.

Dedication

To my beloved family
My husband
My daughter Nayera
And
My son Mahmoud

Contents

Introduction	Page 1
Review of literature	4
 Trials for improving mechanical properties of dental resin composites 	5
Improving modulus of elasticity and flexural strength of dental resin composites	5
Improving wear resistance and compressive strength of dental resin composites	7
Improving fracture toughness of dental resin composites	9
Improving fracture resistance of dental resin composites	11
 Degree of conversion and its effect on mechanical properties of dental resin composites 	13
 Polymerization shrinkage of dental resin composites 	16
Experimental attempts for reduction of polymerization shrinkage stresses in dental resin composites	19
 Microleakage in dental resin composite restorations 	22
Trials to control microleakage	24
Using inserts- megafillers in dental resin composite restorations	26
History of ceramic inserts Available insert systems Investigations on inserts systems Adhesion between inserts and dental resin composites Placement of inserts	27 27 28 32 33
Using natural inserts in dental resin composite restorations Classification and properties of some natural minerals	34 35

Aim of the study	43
Materials and methods	44
Results	68
Discussion	141
Summary and conclusions	162
References	170
Appendix	186
Arabic summary	

List of Tables

		Page
Table (1)	Materials used in the study, their manufacturer, batch number and description.	44
Table (2)	Summary of the experimental subgroups	48
Table (3)	Factorial design and variables interactions	50
Table (4)	Scores of dye penetration and their Chi square values in Filtek P60 composite using inserts etched with phosphoric acid	68
Table (5)	Scores of dye penetration and their Chi square values in Filtek P60 composite using inserts etched with hydrofluoric acid	68
Table (6)	Scores of dye penetration and their Chi square values in Filtek supreme composite using inserts etched with phosphoric acid	71
Table (7)	Scores of dye penetration and their Chi square values in Filtek supreme composite using inserts etched with hydrofluoric acid	71
Table (8)	Scores of dye penetration and their Chi square values in Filtek P60 and Filtek supreme composites using crystalline inserts etched with phosphoric acid	73
Table (9)	Scores of dye penetration and their Chi square values in Filtek P60 and Filtek supreme composites using non crystalline inserts etched with phosphoric acid	74
Table(10)	Scores of dye penetration and their Chi square values in Filtek P60 and Filtek supreme composites using bio inserts etched with phosphoric acid	74
Table(11)	Scores of dye penetration and their Chi square values in Filtek P60 and Filtek supreme composites using crystalline inserts etched with hydrofluoric acid	75

Table(12)	Scores of dye penetration and their Chi square values in Filtek P60 and Filtek supreme composites using non crystalline inserts etched with hydrofluoric acid	75
Table(13)	Scores of dye penetration and their Chi square values in Filtek P60 and Filtek supreme composites using bio inserts etched with hydrofluoric acid	76
Table(14)	Means and standard deviations of gap distance in group (I)	186
Table(15)	Post hoc test for comparison of mean gap distance of group (I) inserts with Filtek P60 composite	186
Table(16)	Post hoc test for comparison of mean gap distance of group (I) inserts with Filtek supreme composite	187
Table(17)	Means and standard deviations of gap distance in group (II)	187
Table(18)	Post hoc test for comparison of mean gap distance of group (II) inserts with Filtek P60 composite	188
Table(19)	Post hoc test for comparison of mean gap distance of group (II) inserts with Filtek supreme composite	189
Table(20)	Means and standard deviations of gap distance in group (III)	189
Table(21)	Post hoc test for comparison of mean gap distance of group (III) inserts with Filtek P60 composite	190
Table(22)	Post hoc test for comparison of mean gap distance of group (II) inserts with Filtek supreme composite	190
Table(23)	Least mean values of gap distance in different groups.	191
Table(24)	Post hoc test for comparison of least mean values of gap distance in different groups considering inserts etched with phosphoric acid	191
Table(25)	Post hoc test for comparison of least mean values of gap distance in different groups considering inserts etched with hydrofluoric acid	193
Table(26)	Means and standard deviations of degree of conversion in group (I)	194

Table(27)	Post hoc test for comparison of mean degree of conversion of group (I) inserts with Filtek P60 composite	195
Table(28)	Post hoc test for comparison of mean degree of conversion of group (I) inserts with Filtek supreme composite	196
Table(29)	Means and standard deviations of degree of conversion in group (II)	197
Table(30)	Post hoc test for comparison of mean degree of conversion of group (II) inserts with Filtek P60 composite	197
Table(31)	Post hoc test for comparison of mean degree of conversion of group (II) inserts with Filtek supreme composite	198
Table(32)	Means and standard deviations of degree of conversion in group (III)	198
Table(33)	Post hoc test for comparison of mean degree of conversion of group (III) inserts with Filtek P60 composite	199
Table(34)	Post hoc test for comparison of mean degree of conversion of group (III) inserts with Filtek supreme composite	199
Table(35)	Highest mean values of degree of conversion in different groups.	199
Table(36)	Post hoc test for comparison of highest mean values of degree of conversion (measured at 48 hours after curing) in different groups considering inserts etched with hydrofluoric acid	200
Table(37)	Post hoc test for comparison of highest mean values of degree of conversion (measured at 48 hours after curing) in different groups considering inserts etched with phosphoric acid	201
Table(38)	Means and standard deviations of degree of conversion in group (I)	202
Table(39)	Post hoc test for comparison of mean degree of conversion of group (I) inserts with Filtek P60 composite	202

Table(40)	Post hoc test for comparison of mean degree of conversion of group (I) inserts with Filtek supreme composite	204
Table(41)	Means and standard deviations of degree of conversion in group (II)	204
Table(42)	Post hoc test for comparison of mean degree of conversion of group (II) inserts with Filtek P60 composite	204
Table(43)	Post hoc test for comparison of mean degree of conversion of group (II) inserts with Filtek supreme composite	205
Table(44)	Means and standard deviations of degree of conversion in group (III)	205
Table(45)	Post hoc test for comparison of mean degree of conversion of group (III) inserts with Filtek P60 composite	206
Table(46)	Post hoc test for comparison of mean degree of conversion of group (III) inserts with Filtek supreme composite	206
Table(47)	Highest mean values of degree of conversion in different groups	207
Table(48)	Post hoc test for comparison of highest mean values of degree of conversion (measured after 3 months of storage in artificial saliva) in different groups considering inserts etched with hydrofluoric acid	207
Table(49)	Post hoc test for comparison of highest mean values of degree of conversion (measured after 3 months of storage in artificial saliva) in different groups considering inserts etched with phosphoric acid	209
Table(50)	Means and standard deviations of fracture toughness in group (I)	210
Table(51)	Post hoc test for comparison of mean fracture toughness of group (I) inserts with Filtek P60 composite	210

Table(52)	Post hoc test for comparison of mean fracture toughness of group (I) inserts with Filtek supreme composite	211
Table(53)	Means and standard deviations of fracture toughness in group (II)	212
Table(54)	Post hoc test for comparison of mean fracture toughness of group (II) inserts with Filtek P60 composite	212
Table(55)	Post hoc test for comparison of mean fracture toughness of group (II) inserts with Filtek supreme composite	213
Table(56)	Means and standard deviations of fracture toughness in group (III)	213
Table(57)	Post hoc test for comparison of mean fracture toughness of group (III) inserts with Filtek P60 composite	214
Table(58)	Post hoc test for comparison of mean fracture toughness of group (III) inserts with Filtek supreme composite	214
Table(59)	Highest mean values of fracture toughness in different groups	215
Table(60)	Post hoc test for comparison of highest mean fracture toughness values in different groups considering inserts etched with hydrofluoric acid	215
Table(61)	Post hoc test for comparison of highest mean fracture toughness values in different groups considering inserts etched with phosphoric acid	217
Table(62)	Means and standard deviations of shear bond strength in group (I)	218
Table(63)	Post hoc test for comparison of mean shear bond strength of group (I) inserts with Filtek P60 composite	219
Table(64)	Post hoc test for comparison of mean shear bond strength of group (I) inserts with Filtek supreme composite	219

Table(65)	Means and standard deviations of shear bond strength in group (II)	220
Table(66)	Post hoc test for comparison of mean shear bond strength of group (II) inserts with Filtek P60 composite	220
Table(67)	Post hoc test for comparison of mean shear bond strength of group (II) inserts with Filtek supreme composite	221
Table(68)	Means and standard deviations of shear bond strength in group (III)	221
Table(69)	Post hoc test for comparison of mean shear bond strength of group (III) inserts with Filtek P60 composite	222
Table(70)	Post hoc test for comparison of mean shear bond strength of group (III) inserts with Filtek supreme composite	222
Table(71)	Highest mean values of shear bond strength in different groups	223
Table(72)	Post hoc test for comparison of highest mean shear bond strength values in different groups considering inserts etched with hydrofluoric acid	223
Table(73)	Post hoc test for comparison of highest mean shear bond strength values in different groups considering inserts etched with phosphoric acid	224
Table(74)	Means and standard deviations of fracture resistance in group (I)	225
Table(75)	Post hoc test for comparison of mean fracture resistance of group (I) inserts with Filtek P60 composite	225
Table(76)	Post hoc test for comparison of mean fracture resistance of group (I) inserts with Filtek supreme composite	226
Table(77)	Means and standard deviations of fracture resistance in group (II)	226

Table(78)	Post hoc test for comparison of mean fracture resistance of group (II) inserts with Filtek P60 composite	227
Table(79)	Post hoc test for comparison of mean fracture resistance of group (II) inserts with Filtek supreme composite	227
Table(80)	Means and standard deviations of fracture resistance in group (III)	228
Table(81)	Post hoc test for comparison of mean fracture resistance of group (III) inserts with Filtek P60 composite	228
Table(82)	Post hoc test for comparison of mean fracture resistance of group (III) inserts with Filtek supreme composite	229
Table(83)	Highest mean values of fracture resistance in different groups	229
Table(84)	Post hoc test for comparison of highest mean fracture resistance values in different groups considering inserts etched with phosphoric acid	230
Table(85)	Post hoc test for comparison of highest mean fracture resistance values in different groups considering inserts etched with hydrofluoric acid	231

List of Figures

Fig. (1)	A photograph of calcite	Page 45
Fig. (2)	A photograph of quartz	45
Fig. (3)	A photograph of barite	45
Fig. (4)	A photograph of agate	45
Fig. (5)	A photograph of opal	46
Fig. (6)	A photograph of glass	46
Fig. (7)	A photograph of corals	46
Fig. (8)	A photograph of aragonite shells	46
Fig. (9)	A photograph of an upper molar with its roots sealed with light cured composite	54
Fig. (10)	A photograph showing the Teflon mould used for preparing specimens for measuring degree of conversion	56
Fig. (11)	A photograph showing a prepared specimen for measuring degree of conversion	57
Fig. (12)	A photograph showing the mould used for preparation of dental resin composite specimens for fracture toughness testing	59
Fig. (13)	A photograph showing the mould used for preparation of specimens for measuring shear bond strength	62
Fig. (14)	A photograph showing quartz insert bonded to Filtek supreme dental resin composite inside the mould, [Top and side views]	63
Fig. (15)	A photograph of a restored upper molar for measuring fracture resistance	64
Fig. (16)	A photograph showing the attachment for fracture resistance measurement	65