

REBOUND HYPERBILIRUBINEMIA AFTER PHOTOTHERAPY

Thesis

Submitted For Fulfillment of MSc Degree in Pediatrics

 $\mathcal{B}y$

Mohamed Abd El-Halim Abd El-Aal

(M.B., B.Ch)

Supervised by

Prof. Dr. Zahraa Mohamed Ezz-Eldin

Professor of Pediatrics Faculty of Medicine Cairo University

Prof. Dr. Yasmeen Amr Mansi

Assistant Professor of Pediatrics Faculty of Medicine Cairo University

Dr. Reem Ibrahim Ismail

Lecturer of Pediatrics Faculty of Medicine Cairo University

Faculty of Medicine Cairo University 2012

صدق الله العظيم

البقرة .. آية رقم ٣٢

بسم الله الرحمن الرحيم

بناء على موافقة الأستاذ الدكتور / نائب رئيس الجامعة بتاريخ ٢٦ / ٧ / ٢٦ ٢٠١٢ اجتمعت اللجنة المشكلة من السادة الأساتذة:

الأستاذ الدكتور / زهراء محمد عزالدين أستاذ طب الأطفال - كلية الطب - جامعة القاهرة (عن المشرفين الأستاذ الدكتور / محمد السيد هاشم أستاذ طب الأطفال - كلية الطب - جامعة القاهرة (ممتحن داخلى) الأستاذ الدكتور / محمد سامى الشيمى أستاذ طب الأطفال - كلية الطب - جامعة عين شمس (ممتحن خارجي بقاعة الدور التاسع بمستشفى الأطفال الجامعى بالمنيرة - أبو الريش لمناقشة رسالة الماجستير في طب الأطفال المقدمة من: الطبيب / محمد عبد الحليم عبد العال

وذلك في تمام الساعة العاشرة صباحا يوم الأربعاء الموافق ٢٦ / ٩ / ٢٦

عنوان الرسالة:

إرتفاع نسبة الصفراء بعد العلاج الضوئى

الملخص:

صفراء حديثى الولاده مشكله شانعه تحدث فى حوالي 7.% من الأطفال الرضع كاملي النمو و 4.% من الخدج في الأسبوع الأول من الحياه. وكان الهدف من هذه الدراسه تحديد ما إذا كان يحدث إرتفاع في نسبة الصفراء في الدم في غضون 7.% ساعة بعد توقف العلاج الضوئى في حديثي الولاده. وأجريت الدراسه على 7.% طفل حديث الولاده من كاملى النمو والخدج تم علاجهم بالعلاج الضوئى. تم عمل إختبار لنسبة الصفراء بالدم لجميع الأطفال بعد 7.% ساعات من توقف العلاج الضوئى. وكانت نتيجة البحث حدوث إرتفاع في نسبة الصفراء بالدم فى 7.% من حديثى الولاده بعد انتهاء العلاج الضوئى. تم تحليل الانحدار المتعدد اللوجستيه لعوامل الخطر لإرتفاع نسبة الصفراء بعد العلاج الضوئى، وتبين أهميه لإنحلال الدم (نسبة الأرجحيه 7.%).

وترى اللجنة قبول البحث

(1 spr

Con Liling

Acknowledgement

First of all and above all great thanks to **ALLAH**.

It is a great honor to me to express my deepest gratitude, extreme thankfulness and deep appreciation to **Prof. Dr. Zahraa Mohamed Ezz-Eldin**, Professor of Pediatrics, Faculty of Medicine, Cairo University for her generous help, continuous guidance and supervision, kind encouragement and valuable advice throughout the work.

I would like to express my deepest gratitude and thanks to **Dr. Yasmeen Amr Mansi**, Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University for her close observation, generous guidance, effective help and valuable supervision.

I wish to express my full thanks to **Dr. Reem Ibrahim Ismail**, Lecturer of Pediatrics, Faculty of Medicine, Cairo University for her continuous interest, generous guidance and for her kind help, that I will remain always remembering.

ABSTRACT

Introduction: Neonatal hyperbilirubinemia is a common problem. Approximately 60% of term infants and 80% of preterm infants develop jaundice in the first week of life. Despite hyperbilirubinemia being a common morbidity among neonates, few studies have systematically studied the phenomenon of post-phototherapy rebound, data about the phenomenon of bilirubin rebound is lacking.

Objectives: The aim of this study was to determine whether a rebound in serum bilirubin level occurs within 24 hours after discontinuation of phototherapy in neonates with hyperbilirubinemia and to identify aetiological factors for hyperbilirubinemia that could be used to select infants at risk for rebound.

Study design: A prospective clinical survey was performed on 133 term and preterm neonates treated with phototherapy. Neonates were tested for T.S.B 24(\pm 6) hours after discontinuation of phototherapy, with additional testing as clinically indicated. The main outcome measure, significant bilirubin rebound, was defined as a post-phototherapy T.S.B \geq 15 mg/dl. Phototherapy was not reinstituted in all cases of rebound, but rather according to clinical indications.

Results: A total of **29** (21.8%) neonates developed significant rebound, mean (±SD) T.S.B was 16.45 (±0.99) mg/dl. Multiple logistic regression analysis for risk factors for significant bilirubin rebound showed significant risk for aetiological risk factors including hemolysis (odds ratio 1.241, 95% CI 1.117 to 2.496) and positive direct Coombs test (odds ratio 6.392, 95% CI 1.530 to 26.706). **Sixteen** of those (55.2%) were retreated with phototherapy, mean (±SD) T.S.B was 16.9 (±1.1) mg/dl. Multiple Logistic regression analysis for risk factors for re-admission for phototherapy showed significant risk for aetiological risk factors including hemolysis (odds ratio 1.121, 95% CI 1.048 to 2.307) and positive direct Coombs test (odds ratio 7.162, 95% CI 1.571 to 32.658). Also there was a trend for re-admission for phototherapy with weight < 2kg (odds ratio 5.976, 95% CI 0.818 to 43.685).

Conclusion: Post-phototherapy neonatal bilirubin rebound to clinically significant levels may occur, especially in cases of hemolysis, direct Coombs test positivity and low birth weight < 2kg. These risk factors should be taken into account when planning post-phototherapy follow up.

Key words: Neonatal hyperbilirubinemia – Bilirubin rebound.

List of Contents

	Page
List of Abbreviations	I
List of Figures	III
List of Tables	V
Introduction	1
Aim of The Work	2
Review of Literature: Chapter (1): Neonatal Hyperbilirubinemia Chapter (2): Rebound Hyperbilirubinemia	3 74
Patients and Methods	
Results	82
Discussion	
Summary	
Conclusion and Recommendations	96
References	97
Arabic Summary	١

List of Abbreviations

ADCC Antibody Dependent Cell mediated Cytotoxicity

AHT Allogenic Hepatocyte Transplantation

ATP Adenosine Tri-Phosphate

BIND Bilirubin Induced Neurologic Disorders

CN Crigler-Najjar

CO Carbon mono-Oxide

CT Computed Tomography

DAT Direct Antiglobin Test

DWI Diffusion-Weighted Imaging

ET Exchange Transfusion

FFA Free Fatty Acids

GA Gestational Age

G6PD Glucose-6-Phosphate Dehydrogenase

HDN Hemolytic Disease of the Newborn

HO Heme Oxygenase

HS Hereditary Spherocytosis

IgG Immunoglobulin G

IgM Immunoglobulin M

IVIG IntraVenous ImmunoGlobulin

LBW Low Birth Weight

LEDs Light-Emitting Diodes

MRI Magnetic Resonance Imaging

NICU Neonatal Intensive Care Unit

N.J Neonatal Jaundice

NMR Nuclear Magnetic Resonance

OD Optical Density

PK Pyruvate Kinase

RBCs Red Blood Cells

Rh Rhesus

SBR Significant Bilirubin Rebound

TcB Transcutaneous Bilirubin

T.S.B Total Serum Bilirubin

UDPGT Uridine Di-Phosphate Glucuronyl Transferase

UVC Umbilical Vein Catheter

WHO World Health Organization

2,3-DPG 2,3-Di-Phospho Glycerate

List of Figures

		Page
Figure (1)	Anatomy of biliary system	5
Figure (2)	Bilirubin metabolism	8
Figure (3)	Gene Therapy	18
Figure (4)	Pentose phosphate pathway	24
Figure (5)	Spherocytosis in comparison with normal RBCs	28
Figure (6)	Elliptocytosis	30
Figure (7)	Mechanism of maternal sensitization in Rh incompatibility and its prevention with anti-D	32
Figure (8)	Difference between Rh and ABO incompatibility	37
Figure (9)	Marked retrocollis and opisthotonus in a baby with kernicterus	44
Figure (10)	Bilirubin encephalopathy	47
Figure (11)	Guidelines for phototherapy in hospitalized infants of 35 or more weeks' gestation	61
Figure (12)	A neonate on conventional phototherapy	62

Figure (13)	A neonate using bili-blanket	62
Figure (14)	Exchange transfusion in a jaundiced neonate	66
Figure (15)	Guidelines for exchange transfusion in infants 35 or more weeks' gestation	69
Figure (16)	Percentage of different aetiological subgroups of hyperbilirubinemia in neonates included in the study	83
Figure (17)	Percentage of different aetiological subgroups in neonates with significant bilirubin rebound	84
Figure (18)	Percentage of different aetiological subgroups in neonates re-admitted for phototherapy	86

List of Tables

		Page
Table (1)	Differential diagnosis of neonatal hyperbilirubinemia	9
Table (2)	Possible mechanisms involved in physiologic jaundice	11
Table (3)	Congenital non-hemolytic unconjugated hyperbilirubinemia: clinical syndrome	19
Table (4)	Drugs that cause significant displacement of bilirubin from albumin	21
Table (5)	WHO classification of G6PD enzyme variants	25
Table (6)	Comparison of the two most common variants of G6PD deficiency	26
Table (7)	Clinical and laboratory features of immune hemolysis due to Rh and ABO incompatibility	38
Table (8)	Factors that increase susceptibility to neuro-toxicity associated with hyperbilirubinemia	42
Table (9)	BIND-score system	46
Table (10)	Guide to dermal staining with level of bilirubin	49
Table (11)	Laboratory evaluation of neonatal hyperbilirubinemia	52
Table (12)	Follow-up assessment of hyperbilirubinemia	55
Table (13)	Risk factors for development of severe hyperbilirubinemia in infants 35 or more weeks' gestation	56

Table (14)	Recommendations for prevention of neonatal hyperbilirubinemia	57
Table (15)	Bilirubin level and management guidelines in LBW babies based on birth weight	70
Table (16)	Number of days for maturation of reticulocytes in the marrow and blood	80
Table (17)	Mode of delivery and gender	82
Table (18)	Neonatal descriptive data	82
Table (19)	Jaundice descriptive data	83
Table (20)	Association between neonatal risk factors and significant bilirubin rebound	85
Table (21)	Logistic regression analysis for risk factors for significant bilirubin rebound	85
Table (22)	Association between neonatal risk factors and readmission for phototherapy	87
Table (23)	Logistic regression analysis for risk factors for readmission for phototherapy	87

INTRODUCTION & AIM OF THE WORK

INTRODUCTION

Neonatal hyperbilirubinemia is a common problem. Approximately 60% of term infants and 80% of preterm infants develop jaundice in the first week of life (*Gomella et al.*, 2009).

Jaundice is a common cause of readmission to hospital after early discharge of newborn babies, but fortunately only few babies have an underlying disease (*Gale et al.*, 2001).

Although most newborns with jaundice are otherwise healthy, they need to be monitored because bilirubin is potentially toxic to the central nervous system. Sufficiently elevated levels of bilirubin can lead to bilirubin encephalopathy and subsequently kernicterus with devastating permanent neurodevelopmental handicaps. Fortunately, phototherapy is an effective method for the prevention or treatment of neonatal hyperbilirubinemia (*Luchtman-Jones et al.*, 2006).

Phototherapy is the primary treatment in neonates with unconjugated hyperbilirubinemia and is now arguably the most widespread therapy of any kind (excluding prophylactic treatments) used in newborns. Phototherapy often averts the need for exchange transfusion and is generally regarded as safe method, the reported side effects have been subjected to extensive and controversial debate (*Vreman et al.*, 2004).

Decreasing hospital length of stay is an objective sought by physicians and administrators alike and it is recommended that infants need not be kept in the hospital after discontinuation of phototherapy. However they should be followed-up to measure rebound bilirubin levels following the discontinuation of phototherapy (*Maisels and Kring*, 2002).

Data available are inadequate to formulate recommendations for or against post-phototherapy bilirubin testing. Many reports on the subject have been flawed by comprising retrospective chart reviews, analysis of rebound by determining the mean bilirubin value rather than peak post-treatment values. Lack of preset definitions for rebound or indications for retreatment are issues for further investigations (*Bansal et al.*, 2010).

AIM OF THE WORK

The aim of this study was to determine whether a rebound in serum bilirubin level occurs within 24 hours after discontinuation of phototherapy in neonates with hyperbilirubinemia and to identify aetiological factors for hyperbilirubinemia that could be used to select infants at risk for rebound.