

Detection of Fluoroquinolones Resistance in Enterobacteriaceae and Pseudomonas species Using Molecular Techniques

Thesis

Submitted for Partial Fulfillment of M.D. in Clinical Pathology

By

Amal Said Morsey Abdelmegeed

MB Bch, M Sc (Clinical Pathology)
Faculty of Medicine - Ain Shams University

Supervised by

Professor/ Hadia Hussein Bassim

Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Professor / Samia Abdou Girgis

Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Doctor/ Sally Mohamed Saber

Assistant Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Doctor/ Dalia Hosni AbdelHamid

Assistant Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Doctor/ Ramy Mohamed Mahmoud

Lecturer of Clinical Pathology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2018

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

Words cannot express my deepest gratitude to **Prof. Hadia Hussein Bassim**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, who helped me throughout this work by training, precious instructions, valuable advices and scientific knowledge to accomplish such work.

It has been a great honor for me to work under her generous supervision Great words really needed to express my gratitude, sincere appreciation and respect to **Prof. Samia Abdou Girgis**, Professor of Clinical Pathology, Ain Shams University, for her great help, continuous support, and sincere advice during this work.

I would also like to thank **Dr. Sally Mohamed Saber**, Assistant Professor of Clinical Pathology, Ain Shams University for her continuous encouragement, guidance and support.

I would also like to thank **Dr. Dalia Hosni AbdelHamid**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her continuous guidance and support she gave me throughout the whole work.

I would also like to thank **Dr. Ramy Mohamed Mahmoud,** Lecturer of Clinical Pathology, Environmental, and Occupational Medicine, Faculty of Medicine, Ain Shams University, for his help and valuable advice.

Last but not least, sincere gratitude to My Family for their continuous encouragement and spiritual support.

سورة البقرة الآية: ٣٢

Contents

Subjects	
List of abbreviations	
List of figures	
List of tables	
• Introduction	1
Aim of the work	4
• Review of Literature	
◆ Chapter (1): Fluoroquinolones resistance in Enterobacteriaceae and Pseudomonas species	
◆ Chapter (2): Laboratory Diagnosis of FQs Resistance	24
◆ Chapter (3): Treatment, Prevention and Control of FQs Resistance	39
Materials and Methods	52
• Results	81
• Discussion	98
• Summary	112
Conclusion and Recommendation	115
• References	118
Arabic Summary	

List of Abbreviations

A. baumannii : Acinetobacter baumannii

aac : Aminoglycoside-modifying acetyltransferase

Asp : Aspartate

ASPs : Antibiotic stewardship programs

AST : Antimicrobial susceptibility testing

ATS : American Thoracic Society

BID : Two times a day

CDC : Centers for Disease Control and Prevention

CLSI : Clinical and Laboratory Standards Institute

E.coli : Escherichia coli

ECDC : European Centre for Disease Prevention and

Control

ESBL : Extended Spectrum β -Lactamases

ESCMID : European Society for Microbiology and Infectious

Diseases

ETT : Endotracheal tube

FDA : United States Food and Drug Administration

FQs : Fluoroquinolones

GIT : Gastrointestinal

H. influenzae : Haemophilus influenzae

ICUs : Intensive care units

List of Abbreviations

IDSA : Infectious Diseases Society of America

K. pneumoniae : Klebsiella pneumoniae

MALDI-TOF: Matrix-assisted laser desorption-ionization time-

of-flight

MDR : Multidrug resistant

MFS : Major facilitator superfamily

MICs : Minimum inhibitory concentrations

MRSA : Methicillin-resistant *Staphylococcus aureus*

MS : Moderate sensitive

NAATs : Nucleic acid amplification techniques

NGS : Next generation sequencing

NS : Non significant

OMP : Outer membrane protein

P. aeruginosa : Pseudomonas aeruginosa

PBS : Phosphate Buffer Saline

PCR : Polymerase chain reaction

PCR-RFLP: Restriction Fragment Length Polymorphism

PMQR : Plasmid mediated quinolone resistance

qepA : Quinolone efflux pump

qnr : Quinolone resistance

QRDRs : Quinolone resistance determining regions

RND : Resistance–nodulation–division family

List of Abbreviations

S. aureus : Staphylococcus aureus

S. enterica : Salmonella enterica.

S. epidermidis : Staphylococcus epidermidis

S. pneumoniae: Streptococcus pneumoniae

S. pyogenes : Streptococcus pyogenes

SDS : Sodium dodecyl sulfate

Ser : Serine

SNP : Single nucleotide polymorphism

SOS : Save our souls

spp. : Species

TAE : Tris Acetate EDTA

TID : Three times a day

UTI : Urinary tract infections

WHO : World health organization

List of Figures

No.	<u>Figure</u>	<u>Page</u>
1	Mechanisms of FQs resistance.	16
<u>2</u>	Principle of MALDI-TOF MS	31
<u>3</u>	Gram negative identification card.	53
<u>4</u>	AST of <i>Pseudomonas</i> using FQs discs.	56
<u>5</u>	AST card for Enterobacteriaceae spp.	57
<u>6</u>	AST card for Pseudomonas spp.	58
<u>7</u>	Multiplex PCR products	69
<u>8</u>	PCR-RFLP of gyrA mutation Ser-83.	76
9	PCR-RFLP for gyrA mutation Asp-87 in <i>Enterobacteriaceae</i> spp.	78
<u>10</u>	PCR-RFLP for gyrA mutation Asp-87 in <i>Pseudomonas</i> spp.	79
<u>11</u>	The Frequency of studied isolates according to type of samples.	82
12	The Frequency of studied isolates according to the hospital clinical wards	84
<u>13</u>	The frequency of studied isolates according to clinical presentation	85
<u>14</u>	History of antibiotics intake	86
<u>15</u>	Antibiogram of FQs resistant studied isolates	88
<u>16</u>	Frequency of PMQR genes among studied isolates	91
<u>17</u>	Frequency of PMQR genes among ESBL	93

List of Figures

No.	<u>Figure</u>	Page
	producing isolates	
<u>18</u>	Frequency of PMQR genes among MDR isolates	94

List of Tables

No.	<u>Table</u>	Page
1	Generations of quinolones	7
	Spectrum of quinolones' activity	8
<u>2</u> <u>3</u>	Most common infections for which FQs are effective therapy	11
<u>4</u>	Incidence rate of FQs resistant bacteria	12
<u>4</u> <u>5</u>	Incidence rate of resistant bacteria in Egypt	14
<u>6</u>	FQ resistance mechanisms associated with changes in MIC of ciprofloxacin in <i>E. coli</i>	22
<u>7</u>	Quinolones and FQs for <i>Enterobacteriaceae</i> and <i>Pseudomonas</i> spp.	26
<u>8</u>	MIC for Quinolones and FQs in Enterobacteriaceae and Pseudomonas spp.	28
9	Molecular studies for detection of PMQR	34
<u>10</u>	Molecular studies for detection of chromosomal mutations	35
<u>11</u>	FQs on the medical list of contract drugs	39
<u>12</u>	List of serious side effects of FQs	41
<u>13</u>	Treatment alternatives to FQs in certain conditions	42
<u>14</u>	Antibiotic discs zone diameter according to <i>CLSI</i> , 2015	56
<u>15</u>	Primer sequences of PMQR genes for multiplex PCR	64
<u>16</u>	Contents of reaction volume	65
<u>17</u>	Primer sequences of gyrA Ser-83 mutation	73
18	Primer sequences of gyrA Asp-87 mutation	74

No.	<u>Table</u>	Page
<u>19</u>	The Frequency of the studied isolates according to type of samples	82
<u>20</u>	Frequency of studied isolates as regards gender	83
<u>21</u>	Frequency of studied isolates as regards age	83
<u>22</u>	The Frequency of levofloxacin and ciprofloxacin susceptibility among studied isolates	87
<u>23</u>	Frequency of PMQR among studied isolates	89
<u>24</u>	Association between gyrA mutations and PMQR	90
<u>25</u>	Frequency of individual plasmid among studied isolates	90
<u>26</u>	Frequency of single and coexistent plasmids	92
<u>27</u>	Association between PMQR and ESBL producing <i>Enterobacteriaceae</i> isolates	92
<u>28</u>	Association between PMQR and MDR isolates	93
<u>29</u>	Frequency of gyrA mutations among FQs resistant studied isolates	95
<u>30</u>	Frequency of gyrA mutations among studied isolates	96
<u>31</u>	Frequency of gyrA mutation among FQs resistant and MS isolates	96
<u>32</u>	Association between types of gyrA mutation and FQs resistant isolates	97
<u>33</u>	Association between types of gyrA mutation and MS FQs isolates	97

Introduction

Aim of the Work

Review of Literature

Chapter (1):

Fluoroquinolones resistance in *Enterobacteriaceae* and *Pseudomonas* species

