

RF BEAMFORMING FOR MILLIMETER WAVE MIMO-OFDM SYSTEMS

By

Yahia Ramadan Ahmed Mohamed Ramadan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

RF BEAMFORMING FOR MILLIMETER WAVE **MIMO-OFDM SYSTEMS**

By

Yahia Ramadan Ahmed Mohamed Ramadan

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the Supervision of

Prof. Mohamed Mohamed Khairy

Dr. Ahmed Salah Ibrahim

Professor **Electronics and Communications Engineering Department** Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

Assistant Professor Electronics and Communications Engineering Department

RF BEAMFORMING FOR MILLIMETER WAVE MIMO-OFDM SYSTEMS

By

Yahia Ramadan Ahmed Mohamed Ramadan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in ELECTRONICS AND COMMUNICATIONS ENGINEERING

Approved by the Examining Committee

Prof. Mohamed Mohamed Khairy Professor, Faculty of Engineering, Cairo University	Thesis Main Advisor
Dr. Yasmin Ali Hassan Fahmy Associate Professor, Faculty of Engineering, Cairo University	Internal Examiner
Prof. Said El-Sayed Ismail El-Khamy Professor, Faculty of Engineering, Alexandria University	External Examiner

Engineer's Name: Yahia Ramadan Ahmed Mohamed Ramadan

Date of Birth: 20/02/1990. **Nationality:** Egyptian

E-mail: yahia.r.ramadan@ieee.org

Phone: 01000761927

Address: 6 Hegazy St., Madinet El Shams El Gadida,

Helwan, Cairo 11739

Registration Date: 10/2012 **Awarding Date:**/....... **Degree:** Master of Science

Department: Electronics and Communications Engineering

Supervisors: Prof. Mohamed Mohamed Khairy

Dr. Ahmed Salah Ibrahim

Examiners: Prof. Said El-Sayed Ismail El-Khamy (External Examiner)

Dr. Yasmin Ali Hassan Fahmy (Internal Examiner)
Prof. Mohamed Mohamed Khairy (Thesis Main Advisor)

Title of Thesis:

RF Beamforming for Millimeter Wave MIMO-OFDM Systems.

Key Words:

RF; Beamforming; Millimeter Wave; Spatial Diversity; Outage Probability; BER; Physical Layer Security

Summary:

In this thesis, we design the RF beamformers for novel criteria. First, we propose a novel spatial diversity scheme to mitigate the human-blockage which is critical issue for mmWave communications. The proposed spatial diversity scheme distributes the energy efficiently over the *L* strongest paths. For partial channel knowledge at the transmitter, where the transmitter has knowledge only of the angles of departure of the propagation paths, we design the RF precoder to minimize the outage transmission probability or minimize the average bit error rate (BER). The proposed schemes outperform the conventional beamforming schemes with full spatial diversity order. Finally, we design the RF precoder for physical layer security for both full and partial channel knowledge at the transmitter. We propose algorithms that outperform the conventional secrecy schemes with different computational complexities.

Copyright © 2015 by Yahia Ramadan Ahmed Mohamed Ramadan All Rights Reserved

Acknowledgment

In the name of Allah the most merciful the most gracious; all thanks to Allah the Lord of the Heavens and Earth and peace be upon Mohamed and his companions. Thence, I would like to thank all those who helped and supported me during the course of my research work till its eventual compilation in this dissertation.

I would like to thank Prof. Mohamed Khairy and Assistant Prof. Ahmed Salah, my advisors, for their invaluable suggestions, dedicated guidance, and constant support that made this work possible.

Thanks shall go to Eng. Belal Salama in Cairo University for his technical suggestions and ideas which helped in this work.

Many thanks to my friends for their support and help through the duration of this work. Last but not least, I am most grateful to my parents for their patience and love. Without them this work would never have come into existence (literally).

Yahia Ramadan Ahmed Mohamed Ramadan

Contents

A	cknov	vledgment	V
Li	st of]	Figures	ix
Li	st of S	Symbols and Abbreviations	xiii
Al	ostrac	e t	1
1	Intr	roduction	2
	1.1	Millimeter Wave Communications	2
	1.2	Analog RF Beamforming	4
	1.3	mmWave System and Channel Models	4
	1.4	Thesis Contribution	6
	1.5	Thesis Outline	7
2	Lite	erature Review	8
	2.1	System Model	8
	2.2	The General Criterion for RF Beamforming with FCSI	9
	2.3	RF Beamforming with PCSI	11
		2.3.1 Park-Pan Scheme	11
		2.3.2 Multipath Grouping (MPG) Schemes	12
	2.4	Simulation Results	13
3	Reli	able RF Beamforming for mmWave MIMO-OFDM Systems	16
	3.1	System and Channel Models	17
	3.2	Problem Formulation	18
	3.3	Optimization Algorithms	20
		3.3.1 Semidefinite Relaxation Algorithm (SDR)	20
		3.3.2 Gradient Ascent Algorithm (GAA)	21
	3.4	Simulation Results	22

Re	eferen	ices		62
Li	st of l	Publica	tions	61
6	Con	clusion	s and Suggested Future Work	59
		5.4.3	Computational Complexity Ratio	58
		5.4.2	Achievable Secrecy Rate	55 50
		5.4.1	Convergence of Proposed GAA	53
	5.4	Simula	ation Results	53
	5.3	Secure	e RF Beamforming with Partial CSI	50
		5.2.2	Gradient Ascent Algorithm (GAA)	48
		5.2.1	Semidefinite Relaxation (SDR)	47
	5.2	Secure	e RF Beamforming with Full CSI	46
	5.1	Systen	m and Channel Models	45
5	RF I	Beamfo	orming for Secure mmWave MISO-OFDM Systems	44
		4.4.4	Computational Complexity Ratio	42
		4.4.3	Average BER	41
		4.4.2	Rate Outage Probability	40
		4.4.1	Convergence of Proposed GAA	38
	4.4		ation Results	38
		~.	4.3.2.2 Gradient Ascent Algorithm (GAA)	37
			4.3.2.1 Semidefinite Relaxation (SDR)	36
		4.3.2	Optimization Algorithms	36
		4.3.1	Problem Formulation	35
	4.3		num BER RF Beamforming	35
		4.2.2	Optimization Algorithm	33
		4.2.1	Problem Formulation	32
	4.2	Minim	num Outage RF Beamforming	32
	4.1	System	m and Channel Models	31
	OFI	OM Sys	tems	30
4	Min	imum	Outage/BER RF Beamforming for mmWave MIMO	-
		3.4.4	Computational Complexity Ratio	29
				29
		3.4.2	Transmit Radiation Pattern	23 27
		3.4.1	Achievable Data Rates	23
		3.4.1	Convergence of Proposed GAA	23

List of Figures

1.1	Rain attenuation in dB/km across frequency at various rainfall	2
1.0	rates [4]	3
1.2	Atmospheric absorption across mm-wave frequencies in dB/km [5].	3
1.3	Analog RF precoder vs. digital baseband precoder	4
1.4	$N_T \times N_R$ ULA mmWave MIMO-OFDM system	5
2.1	Equivalent channel of an 8×8 ULA system with $L = 5$ by the RF	
	beamforming schemes with FCSI	14
2.2	Average BER of an 8×8 ULA uncoded-system with $L = 5$ by the	
	RF beamforming schemes with FCSI	14
2.3	Outage probability of a data rate of 3 bits/s/Hz for an $8 \times 8 \text{ ULA}$	
	system with $L = 5$ by the RF beamforming schemes with FCSI	15
3.1	$N_T \times N_R$ mmWave MIMO-OFDM system with RF beamforming.	18
3.2	Convergence of the proposed GAA with $L = 5 \dots \dots \dots$	23
3.3	1% Outage capacity of an 8×8 ULA system with $L = 5$ by differ-	
	ent schemes in case of no blockage	24
3.4	1% Outage capacity of an 8×8 ULA system with $L = 5$ by dif-	
	ferent schemes in case of blockage to the path with the maximum	
	channel gain after beamforming	25
3.5	1% Outage capacity of an 8×8 ULA system with $L = 10$ by dif-	
	ferent schemes in case of no blockage.	26
3.6	1% Outage capacity of an 8×8 ULA system with $L = 10$ by dif-	
	ferent schemes in case of blockage to the path with the maximum	
	channel gain after beamforming	26
3.7	1% Outage capacity of an 8×8 ULA EGB system with $L = 10$ by	
	different schemes in case of blockage to the path with the maxi-	
	mum channel gain after beamforming	27
3.8	Transmit radiation pattern of an 8×8 ULA with $L = 5$	28
\sim \sim		