

AIN SHAMS UNIVERSITY FACULITY OF ENGINEERING CAIRO - EGYPT

Field Theory Analysis of Microwave Dielectric Resonator Antennas

A Thesis

Submitted in Partial Fulfillment of the Requirement

For the Degree of Master of Science in Electrical Engineering

(Electronics and Communication Department)

Submitted By

Tamer Gaber Mohamed Ali Aboelnaga

Researcher Assistant in the Microstrip Department Electronics Research Institute

Under supervision of

Prof. Esmat Abdel-Fattah Abdallah

Microstrip Department

Electronics Research Institute

Prof. Hadia Mohamed Said Elhennawy

Dean of the Faculty of Engineering
Ain Shams University

Dr. Deena A. Salem

Researcher in Microstrip Dep.
Electronics Research Institute
Cairo 2007

AIN SHAMS UNIVERSITY FACULITY OF ENGINEERING CAIRO - EGYPT

Examiners Committee

Name: Tamer Gaber Mohamed Ali Aboelnaga

Thesis: Field Theory Analysis of Microwave Dielectric Resonator Antennas

Degree: Master of Science in Electrical Engineering

(Electronics and communications Department)

Approved by:

Name, Title and Affiliation Signature		
1- Prof. Ebraheem Ahmed Salem	•••••	
Military Technical College (MTC)		
2- Prof. Safwat Mahrous Mahmoud	•••••	
Electronics and Communication Department		
Faculty of Engineering - Ain Shams University		
3- Prof. Esmat Abdel-Fattah Abdallah	•••••	
Microstrip Department.		
Electronic Research Institute		
4- Prof. Hadia Mohamed Said Elhennawy	•••••	
Dean of the Faculty of Engineering		
Ain Shams University		
Date: / / 2007		

Statement

This thesis is submitted in partial fulfillment of the requirement of the degree of Master of Science in the Electronics and Communications Electrical Engineering Department, Ain Shams University.

The author carried out the work included in this thesis, and no part of this thesis has been submitted for a degree or qualification at any other university or institute.

Name : Tamer Gaber Mohamed Ali Aboelnaga

Signature :

Date : / / 2007

ACKNWLEDGMENTS

All gratitude is to Allah

I would like to thank my supervisor, Prof. Esmat Abdel-fattah Abdallah for her patience, always accurate correct scientific opinion and suitable scientific naming, infinite support, guidance through this research as well as giving me the chance to work under her supervision. Also I would like to thank her for her patience, fast, very accurate revision of this thesis.

Special appreciation is also designated to Prof. Hadia Elhennawy for teaching, support in the simulation package, dielectric material and her infinite help. I would also like to thank Dr. Deena Salem for her patience, support and guidance.

Special thanks to fellow research mates and unforgotten friends who helped me in one way or another.

Last but not least, a very big thank to my beloved parents, wife, son, brother and sisters for their support.

Abstract

Dielectric resonator antennas (DRAs) have attracted broad attentions in various applications due to their attractive features in terms of high radiation efficiency, light weight, small size, low profile and different methods of excitation that can be used. The main limitation of the DRAs is the narrow bandwidth, so the initial motivation behind this thesis is to enhance the bandwidth of the rectangular DRA through the combination of the rectangular dielectric resonator with other resonators such as a slot and each radiator is designed to radiate at two separated bands. If the two bands are close to each other, a hybrid resonator can offer broadband operation. Analytical treatment based on the existing theory of a dielectric waveguide model DWM of the rectangular DRA concurrently with the method of separation of variables were used to predict resonant frequency and quality factor for the lowest order mode of the rectangular DRA. Field theory analysis of the feeding scheme using transmission line model of aperture coupling was also used. A Matlab program based on the finite difference time domain FDTD as a numerical technique for predicting the resonant frequency of the rectangular dielectric resonator was built. In order to check the correctness of the program it was applied on perfect electric conductor air filled rectangular cavity. Mathematical representation of Maxwell's equations, accuracy and stability, sources that can be used, conversion from time domain to frequency domain, absorbing boundary condition and near to far field transformation were also discussed. A design procedure and the prediction of the radiation pattern using the ready-made software package HFSS were implemented. The resonant frequency and impedance bandwidth of the offset aperture coupling rectangular DRA were computed. A primary focus of the experimental work was to choose the DRA parameters (geometric dimensions, dielectric constant ε_r and excitation method) carefully to make the DRA suitable for a wide S-band application (2 - 4) GHz. The designed DRA and an aperture coupled microstrip patch antenna were fabricated using thin film technology and photolithographic technique. Good agreement was found among analytical, numerical and experimental results. The DRA gave wider bandwidth than the conventional microstrip antenna using the same method of excitation.

Table of Contents

ContentPage	es
Statement	
AcknowledgementsII	
AbstractII	[
Table of Content	r
List of Figures	_
List of TableXII	[
List of Symbols and abbreviationXIV	V
Chapter 1	
Introduction	
1.1Summary	1
1.2 S-Band Applications	1
1.2.1 Weather radar	1
1.2.2 Communications Satellites	1
1.2.3 Wireless LAN.	2
1.3 Advantages and Limitations.	2
1.3.1. A Single DRA	2
1.3.2. Two or Multi- Dielectric Resonators.	3
1.3.3. Hybrid Dielectric Resonator with Other Resonators	4
1.4 Achievements	4
1.5 HFSS Software package	5
1.5.1 Powerful Drawing Capabilities Features	6
1.5.2 Advanced Materials	6
1.5.3 Powerful Macros	7
1.5.4 Parametric Analysis	7
1.6 Thesis Organization.	7
Chapter 2	
Dielectric Resonator Antennas, A Review	
2.1 Introduction.	9
2.2 Historical Background of Dielectric Resonator Antennas	
2.3 Advantages of the Dielectric Resonator Antennas	

2.4 Classification of DRA
2.4.1 Cylindrical Resonator
2.4.1.1Radiation Characteristics of Different Modes
2.4.1.2 Resonant Frequencies of Isolated Cylindrical DR14
2.4.1.3 Cylindrical Resonator on a Metallic Plane
2.4.2 Cylindrical Ring DRs
2.4.3 Spherical DRs
2.4.4 Hemispherical DR on a Metallic Plane
2.4.5 Rectangular DRs
2.4.6 Rectangular DR on a Metallic Plane
2.4.7 Tetrahedron Dielectric Resonator Antenna
2.4.8 Dielectric Resonator Loaded Patch Antenna
2.4.9 Rectangular Stair Shaped Dielectric Resonator Antenna
2.4.10 Combination Antenna with Rectangular Dielectric Resonator
and Inverted L-Plate24
2.5 Excitation Scheme for the DR Antennas
2.5.1 Conducting Probe
2.5.2 Microstrip-slot Coupling Scheme
2.5.3 Coplanar Lines
2.5.4 Conformal Strip Excitation of Dielectric Resonator Antenna
2.5.5 Parasitic Patch Excitation of the Dielectric Resonator Antenna 26
2.5.6 Dielectric Resonator Antenna Excited by
a Disk-Loaded Coaxial Aperture27
2.5.7 Dielectric Resonator Antenna Excited by a Waveguide Slot
2.3.8 Offset Cross-Slot-Coupled Dielectric Resonator Antenna
2.5.9 Offset Slot-Coupled Dielectric Resonator Antenna
2.6 Methods of analyses
Chapter 3
Field Theory Analysis of the Rectangular DRA
3.1 Introduction
3.2 Analysis of the Rectangular DRA
3.3 Radiation Q Factor
3.4 Transmission Line Model of Aperture Coupling

3.4.1 Method of Aperture Coupling	40
3.4.2 Equivalent circuit	42
3.4.3 Evaluations of n_{x1} and n_{y1}	45
3.5 Radiation Model.	49
3.5.1 Far Field from Equivalent Volume Polarization Current	49
3.5.2 Equivalent Volume Polarization Current	50
3.5.3 Far Field due to Polarization Current	51
3.5.4 Numerical Integration of Polarization Current	52
Chapter 4	
Finite Difference Time Domain	
4.1 Introduction.	55
4.2 Historical Background	55
4.3 Fundamental Issues of FDTD	56
4.3.1 The One-Dimensional Scalar Wave Equation	56
4.3.1.1 Propagating Wave Solutions	56
4.3.1.2 Finite Differences.	57
4.3.2 Yee FDTD Algorithm	59
4.4 Accuracy and Stability	66
4.5 Sources That Can be Used in the FDTD Method	67
4.6 Common Sources Waveforms for the FDTD	67
4.6.1 Sinusoidal Waveforms Sources	67
4.6.2 Gaussian Pulse and Maximum Frequency	68
4.6.3 Derivative Gaussian Pulse	69
4.7 Conversion from Time Domain to Frequency Domain Using DFT	69
4.8 Absorbing Boundary Conditions	71
4.8.1 Differential-Equation-Based and Other Non-Material ABC's	71
4.8.2 Material ABC's	73
4.9 Near to Far Field Transformation.	74
4.9.1 Surface Equivalent Theorem: Huygen's Principle	74
4.9.2 Solution to Radiation Fields	78
4.10 Reasons for Using HFSS	82
Chanter 5	

Chapter 5

Numerical and Experimental results

5.1 Introduction	84
5.2 Design procedure	84
5.3 Matlab Program.	85
5.4 Rectangular Waveguide Cavity Resonator	87
5.5 Numerical Results	87
5.5.1 DRA FDTD Numerical Results	87
5.5.1.1 Resonance Frequency	. 87
5.5.1.2 Bandwidth	88
5.5.2 HFSS Numerical Results for DRA	89
5.5.2.1 Resonance Frequency	89
5.5.2.2 Bandwidth	90
5.5.2.3 Efficiency.	90
5.5.2.4 Input Impedance	90
5.5.2.5 Radiation Pattern	92
5.5.3 HFSS Numerical Result for MPA	92
5.5.3.1 Resonance Frequency	92
5.5.3.2 Bandwidth	92
5.5.3.3 Efficiency.	93
5.5.3.4 Input Impedance	94
5.5.2.5 Radiation Pattern	94
5.7 Fabrication and Measurement.	94
5.7.1 Experimental Results for the DRA	96
5.7.1.1 Resonance Frequency	96
5.7.1.2 Bandwidth	98
5.7.1.3 Input Impedance	98
5.7.2 Experimental Results for the MPA	98
5.7.2.1 Resonance Frequency	98
5.7.2.2 Bandwidth	100
5.7.3.3 Input Impedance	.100
5.8 Comparisons	100
5.9 Conclusion	. 101

Chapter 6

Conclusions and Suggestions for Further Work

6.1 Conclusions	103
6.2 Further Work	104
6.2.1 An1ytical	104
6.2.2 Experimental	104

List of Figures

Chapter two

Fig.2.1(a,b)	Isolated cylindrical DRs	۱۲
Fig.2.2	Nature of radiation of different mode of an isolated cylindrical DRM denote a magnetic dipole and P denote an electric dipole	۱۳
Fig.2.3	A cylindrical DR placed on a metallic plane	١٦
Fig.2.4	Equivalence between the modes of an isolated cylindrical DR of height 2H and a cylindrical DR of height H placed on a metallic plane	1 \
Fig.2.5	(a) A half-split cylindrical DR placed on a metallic plane (b) equivalent isolated cylindrical DR	١٧
Fig.2.6	Isolated cylindrical ring DR antenna	١٨
Fig.2.7	Isolated rectangular DR antenna	۲۱
Fig.2.8	Geometry of the truncated tetrahedron DRA over a ground plane	77
Fig.2.9	Geometry of the proposed wideband DR loaded patch antenna (a) front view, (b) side view	۲ ٤
Fig.2.10	Geometry of the circularly polarized rectangular stair DRA	۲ ٤
Fig.2.11	Configuration of the combination antenna	70
Fig 2.12	Feed structures for the antenna. The antenna fed by (a) vertical T-shaped strip and (b) microstrip with T-branch through an aperture	70
	(a) probe excitation scheme for a DR antenna placed on a	
Fig.2.13	metallic plane. (b) Probe excitation scheme for a half-split	
	cylindrical DR antenna placed on a metallic plane	77
Fig.2.14	(a) Side view, and (b) top view of microstrip-slot excitation	
1 1g.2.17	scheme for the DRA antenna	۲٧
Fig.2.15	Top view and side view of DRA excited by a coplanar	
11g.2.13	waveguide	۲٧
Fig.2.16	The configuration of the conformal strip-fed DRA	۲۸
Fig.2.17	Configuration of the conformal-strip excited DRA with a parasitic patch	۲۸
Fig.2.18	Antenna configuration. (a) Side view. (b) Top view	۲۹

Fig.2.19	Geometry of the DRA excited by a narrow slot in a rectangular	
	waveguide	
Fig.2.20	Schematic of the cross-slot-coupled DRA. Inset: centered design	
Fig.2.21	Rectangular DRA with microstrip slot excitation	
Chapter t	hree:	
Fig.3.1	Microstrip-slot excitation of the TE_{111}^z mode of rectangular DRA	
	placed on a ground plane	
Fig.3.2	Isolated rectangular dielectric resonator antenna	
Fig.3.3	Microstrip terminated in a short circuit	
Fig.3.4	Microstrip terminated in a open circuit	
Fig.3.5	Offset Microstrip feed	
Fig.3.6	Center-fed but inclined microstrip feed	
Fig.3.7	A simplified equivalent circuit of an aperture-coupled DRA	
Fig.3.8	Top and side views of a microstrip fed slot antenna	
Fig.3.9	Equivalent network model of a microstrip-fed slot antenna	
Fig.3.10	Microstrip line with fictitious walls	
Fig.3.11	Turn ratio	
Fig.3.12	Breaking up the dielectric region into cubical cells for computing the	
	integration of eqn.3.85	
Chapter f	our:	
Fig ٤,١	Position of the electric and magnetic field vector components about a	
	cubic unit	٦
Fig ٤,٢	Space-time chart of Yee algorithm for a one-dimensional wave	
	propagation	٦
Fig ٤,٣a.	Sine wave with frequency of 1 GHz versus time	_
Fig b.	Corresponding spectrum of the Sine wave at 1 GHz	_
4.3		
Fig 4.4 a.	Gaussian pulse for f _{max} = 10 GHz	-
Fig 4.4 b.	Corresponding spectrum of the Gaussian pulse for $f_{\text{max}} = 10 \text{ GHz}$	٦
Fig 4.5 a.	Derivative Gaussian pulse for $f_{max} = 10 \text{ GHz}$	٧

rig 4.5 0.	10 GHz
Fig.4.6	Actual and Equivalent problems model of surface equivalent principle
Fig.4.7 a.	Love's equivalent principle model
Fig.4.7 b.	Perfect electric conductor (PEC) equivalent
Fig.4.7 c.	Perfect magnetic conductor (PMC) equivalent
Fig 4.8	Equivalent models for magnetic source radiation near a perfect
	electric conductor
Fig.4.9	Coordinate system for computing radiating fields
Chapter 1	five
Fig o, \	Isolated rectangular dielectric resonator antenna
Fig o, Y	The flowchart of the FDTD program
۶ig ۰,۳	Amplitude of the Fourier transform of the time varying electric field
	in an air filled rectangular waveguide cavity resonator
Fig o, &	Contour lines of the TE ₁₁₀ mode
Fig o,o	Contour lines of the TE ₁₂₀ mode
۶ig ۰,٦	Contour lines of the TE ₁₃₀ mode.
Fig o, V	Contour lines of the TE ₁₄₀ mode.
Fig o,A	Contour lines of the TE ₁₅₀ mode
Fig o,9	Amplitude of the Fourier transform of the time varying electric field in DR
Fig o, \.	The configuration of the DRA all dimension are given in mm
Fig o, 11	The reflection coefficient S11 of the DRA using HFSS
Fig o, 17	DRA input impedance as real and imaginary part versus the
	frequency
Fig o,18	DRA E plane using the HFSS
Fig o,12	DRA H plane using the HFSS
Fig o, 10	The configuration of the MPA all dimension are given in mm
Fig o, 17	The reflection coefficient S11 of the MPA using HFSS
Fig o, ۱۷	HFSS MPA input impedance as real and imaginary part versus the
	frequency

Fig o, 1A	MPA E plane using the HFSS	97
Fig o,19	MPA H plane using the HFSS	97
Fig.5.20.a	Top view of the DRA with VNA	97
Fig.5.20.b	Top view of the DRA	97
Fig.5.20.c	Bottom view of the DRA	97
Fig.5.21.a	Top view of the MPA	97
Fig.5.21.b	Bottom view of the MPA	97
Fig.5.21.c	Top view of the MPA with VNA	97
Fig.5.22	DRA experimental reflection coefficient S ₁₁	91
Fig.5.23	Experimental DRA input impedance as real and imaginary part	
	versus the frequency	99
Fig.5.24	MPA experimental reflection coefficient S ₁₁	99
Fig.5.25	Experimental MPA input impedance as real and imaginary part	
	versus the frequency	١.

List of Tables

Table (5.1)	Theoretical, Experimental Resonant frequency and Radiation Q Factors
	for isolated DR with different dimensions and dielectric
	constants of the TE_{111}^z 85
Table 5.2	Analytical and Numerical results of a rectangular waveguide cavity
	resonator87
Table (5.3)	Closed formula, FDTD, HFSS and experimental results [3]101
Table (5.4)	DRA and MPA Results using HFSS
Table (5.5)	DRA and MPA Measurement Results using the VNA 101