A COMPARISON OF ORALLY ADMINISTERED MISOPROSTOL WITH VAGINALLY ADMINISTERED MISOPROSTOL FOR CERVICAL RIPENING AND LABOR INDUCTION

Thesis
Submitted for fulfillment of Master Degree in Obstetrics and Gynecology

By HANY SAAD AMIN MOHAMED Resident of Obstetrics and Gynecology Faculty of Medicicine-Cairo University

Supervised by POF. DR. MAHER MOHAMED ABDEL WAHAB

Professor of Obstetrics & Gynecology Faculty of Medicine-Cairo University

PROF. DR. ASHRAF ABDEL RAHMAN RAMADAN

Professor of Obstetrics & Gynecology Faculty of Medicine-Cairo University

DR. AHMED MOHAMED ABDEL HAKE

Lecturer of Obstetrics & Gynecology Faculty of Medicine-Cairo University

Fuculty of Medicine

Cairo University

2008

Abstract

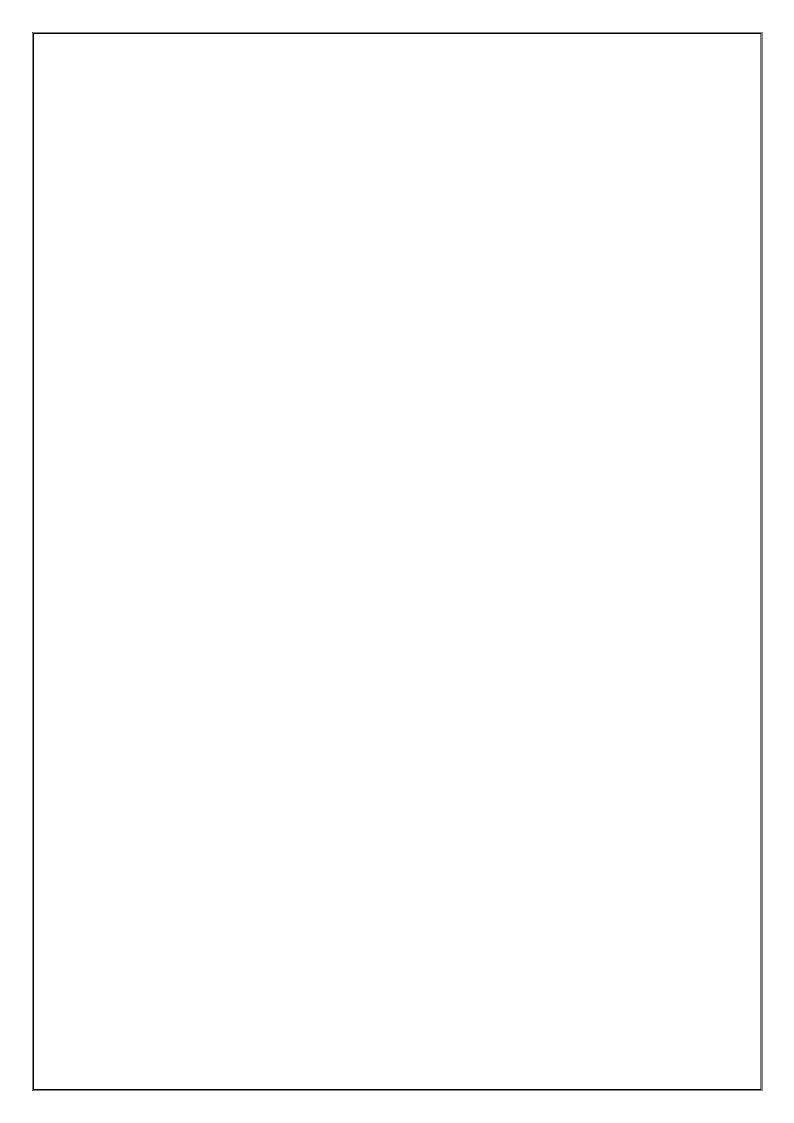
Objectives: Our purpose was to compare orally administered with vaginally administered misoprostol for cervical ripening and labor induction.

Patients and Methods: 40 subjects with medical or obstetrical indications for labor induction and undilated, uneffaced cervices were randomly assigned to receive orally administered or vaginally administered misoprostol. 50ug of oral misoprostol or 25ug of vaginal misoprostol was given every 4 hrs. If cervical ripening(Bishop score of ≥ 8 or cervical dilatation of ≥ 3 cm) or active labor didn't occur, repeated doses were given to a maximum of 6 doses or 24 hrs. Thereafte, oxytocin was administered intravenously by a standardized incremental infusion protocol to a maximum of 22mU/min.

Results: of the 40 subjects evaluated, 20 received orally administered misoprostol and 20 subjects received vaginally administered misoprostol. fewer orally treated subjects (3 cases where 2 cases are multigravida and 1 case primigravida) were delivered in 24 hrs of the initiation of induction, in comparison with the vaginally treated group (16 cases where 9 cases are multigravida and 7 cases are primigravida). The time from induction to delivery in the orally treated group was 35.5±12 hrs (mean and SD) in nulligravida, 23±13 hrs (mean and SD) in multigravida, while in the vaginally treated group was 21.5±14 hrs (mean and SD) in nulligravida, 19±10 hrs (mean and SD) in multigravida. the mean time interval between the induction to initiation of vaginal delivery between the orally treated group 28.9±13 hrs(mean and SD) while in the vaginally treated group 20±13 hrs(mean and SD). the induction to initiation of delivery (vaginal or abdominal) as 29±12 hrs(mean and SD) in the orally treated group, 21±12 hrs(mean and SD) in the vaginally treated group, the average number of doses of misoprostol used for induction as 3.3±1.7(mean and SD) in the orally treated group while 2.2 ± 1.3 (mean and SD) in the vaginally treated group (P =0.043). Oxytocin augmentation was used in 15 cases in the

orally treated and 12 cases in the vaginally treated group (P = 0.500). The number of cases delivered vaginally in the orally treated group 12 cases(60%) while in the vaginally treated group 19 cases(95%). The number of cases delivered by CS in the orally treated group were 8 cases while in the vaginally treated group were 1 case(P = 0.023). Chorioamnionitis occurred in 4 cases in oral group, 3 cases in the vaginal group. Uterine tachysystol occurred in 1 case in oral group, 2 cases in the vaginal group. Uterine hypertonus occurred in 1 case in the oral group while no cases reported in the vaginal group. Abnormal FHR pattern reported in 5 cases in the oral group, 6 cases in the vaginal group with no statistical difference between both groups. The neonatal outcome show no statistical difference between both groups.

Conclusion: Oral administration of 50ug of misoprostol appears less effective than vaginal administration of 25ug of misoprostol for cervical ripening and labor induction.


Key words: Misoprostol, cervical ripening, labor induction.

Contents

		Page
Introduction		1
Aim of work		3
	re	4
• Cervix:		4
	Anatomy	
	Histology	
	Physiology	
	Adaptation of cervix to pregnancy	
	Adaptation of the cervix during labor	17
• Cervical ripe		10
	Cervical ripening	
	Hormonal control of cervical ripening	
	Cervical assessment	
	Methods of cervical ripening	•
• Misoprostol:		
	Chemistry	
	Pharmacology	
	Pharmacokinetics	
	Pharmacodynamics	
	Misoprostol biological effects	
	Modes of administration	41
• (Clinical guidelines	43
Patients and method	ods	45
Results		51
Discussion		69
Conclusion		76
Summary		. 78
References		. 82
Arabic summary		•

List of Tables

Table No. Pag		
1.	Bishop scoring system (1964)	
2.	The Burnett scoring system (1966)	
3.	Field scoring system (1966)	26
4.	Friedman scoring system (1967)	. 27
5.	Cervical scoring system Calder et al(1977)	. 27
6.	Lange scoring system (1982)	28
7.	Dhall scoring system (1986)	28
8.	Selection of candidates for induction of labor	
	and cervical ripening	30
9.	Misoprostol Dosages for Reproductive Health	43
10.	Selection of candidates for induction of labor	
	and cervical ripening	. 50
11.	Intrapartum complications after oral or vaginal	
	administration of misoprostol	50
12.	The comparison between both treatment groups among the	
	Induction to delivery interval, initiation of vaginal delivery,	
	Initiation of delivery	52
13.	The comparison between both treatment groups among	
	the average No of doses, Bishop score at induction, Bishop	
	score at redosing	55
14.	The comparison between both treatment groups among the	
	average No of cases delivered in 12hrs, 24hrs, delivered	
	by CS	57
15.	The comparison between both treatment groups among the	
	complication during induction by misoprostol	60
16.	The comparison between both treatment groups with regard	
	to the fetal outcome after induction by misoprostol	64

List of Figures

Figure No.	Page
Fig (1): Vagina. A. Left half of pelvis cut away. B. Vaginal	
fornice and cervix as viewed through a speculum	5
Fig (2): Branches of the anterior trunk of the internal iliac	
artery	6
Fig (3): Uterine and vaginal arteries	7
Fig (4): Pelvic lymphatics	8
Fig (5): Schematic representation of the factors that may	
2	21
	38
Fig (7): Safe single doses of vaginal misoprostol for producing	
	44
Fig (8): Comparison between the oral group & vaginal group	
	52
Fig (9): Comparison between the oral group & vaginal group	
in mean time of induction to delivery interval in	
•	53
Fig (10): Comparison between the oral group&vaginal group	
In the mean time of induction to delivery interval in	
•	53
Fig (11): Comparison between the oral group & vaginal group	
	54
Fig (12): Comparison between the oral group & vaginal group	
	54
Fig (13): show the comparison between oral and vaginal group	
in the average No of doses, Bishop score at time of	
	55
Fig (14): Comparison between the oral group & vaginal group	
in the average number of doses of misoprostol used	
for induction	6
Fig (15): Comparison between the oral group & vaginal group	
in the Bishop score before redosing	6
Fig (16): Comparison between the oral group & vaginal group	
in the Bishop score at the time of induction 57	7

Fig (17): Comparison between the oral group & vaginal group	
in the number of cases delivered in 12hrs, 24hrs, by	
CS	58
Fig (18): Comparison between the oral group & vaginal group	
in the number of cases delivered in 12hrs	58
Fig (19): Comparison between the oral group & vaginal group	
in the number of cases of primigravida delivered in	
24 hrs	59
Fig (20): Comparison between the oral group & vaginal group	
in the number of cases of multigravida delivered in	
24 hrs	59
Fig (21): Comparison between the oral group & vaginal group	
in the number of cases delivered by CS	60
Fig (22): Comparison between the oral group & vaginal group	
in the complications of misoprostol induction	61
Fig (23): Comparison between the oral group & vaginal group	
in the number of cases affected by chorioamnionitis	61
Fig (24): Comparison between the oral group & vaginal group	
in the number of cases affected by abnormal FHR	
pattern	62
Fig (25): Comparison between the oral group & vaginal group	
in the number of cases affected by Hypertonus	62
Fig (26): Comparison between the oral group & vaginal group	
in the number of cases affected by Tachysystole	63
Fig (27): Comparison between the oral group & vaginal group	
in the number of cases receiving oxytocin for	
induction	63
Fig (28): comparison between the oral group & vaginal group	
in the neonatal outcome	64
Fig (29): comparison between the oral group & vaginal group	
in the neonatal resuscitation	65
Fig (30): comparison between the oral group & vaginal group	
in the number of neonates who are intubated after	
delivery	65

Fig (31): comparison between the oral group & vaginal group	
in the number of neonates who are needing IPPV	
after delivery	66
Fig (32): comparison between the oral group & vaginal group	
in the number of neonates who are needing oxygen	
supplementation after delivery	66
Fig (33): comparison between the oral group & vaginal group	
in the number of neonates with thin meconium	67
Fig (34): comparison between the oral group & vaginal group	
in the number of neonates with thick meconium	67
Fig (35): comparison between the oral group & vaginal group	
in the number of neonates with Apgar score	
at 1 min < 7	68

List of abbreviations

FHR	Fetal heart rate
GAG	Glucosaminoglycan
IL-6	Interleukin-6
IUFD	Intrauterine fetal death
IUGR	Intrauterine growth retardation
Min	Minutes
hrs	Hours
NO	Nitric Oxide
PGE2	Prostaglandin E2(Dinoproston)
PGF2α	Prostaglandin F2α
PGI ₂	Prostacyclin
RU486	Mifepristone
U.S	United states

Acknowledgment

I wish to express my deepest and profound thanks to **Prof. Dr. Maher Abdel Wahab,** Professor of Obstetrics and Gynecology, Kasr Al-Aini Hospital, Cairo University, for giving me honor and great privilege of working under his kind supervision, for his continuous encouragement and his fatherly guidance.

I would like to express my endless appreciation to **Prof. Dr. Ashraf Abdel Rahman Rmadan,** Proffessor of Obstetrics and Gynecology, Kasr Al-Aini Hospital, Cairo University, for his enthusiasm, criticism, continuous support and interest in his work

.

Special words of thanks are due to **Dr. Ahmed abdel Hake,** Lecturer of Obstetrics and Gynecology, Kasr Al-Aini Hospital, Cairo University, for his great help and support. His participation as well as his encouragement.

Introduction

There are many indications for term labor inductions, including postterm pregnancy, preeclampsia, diabetes mellitus, oligohydraminos, IUFD, IUGR, abnormal antepartum fetal surveillance results. The immature cervix is the greatest barrier to labor induction. Because oxytocin only affect only the uterine contractions and not the cervical ripening, prostaglandin agents are the first choice for labor induction because they exert a local effect on the cervix, causing effacement and dilatation, and stimulate myometrial contractions, increasing the likelihood of success. Dinoprostone has been the agent of choice of preinduction cervical ripening for several decades and is currently one of the pharmacological agents approved by the U.S Food and Drug administration for this indication. Although widely used, it has two disadvantages: It is expensive, and it require continuous refrigeration. Thus, there is a need for less costly and less temperature-sensitive alternatives. Misorpostol, a synthetic PGE1 analogue, has been proposed as an alternative agent for the preinduction of cervical ripening. Misoprostol was initially used for treatment of peptic ulcer caused by prostaglandin synthetase inhibitors, and was approved by the U.S. Food and Drug Administration for Obstetric use in April 2002.

Although the oral dose of 100 ug was previously advocated as preferred dose by *wing et al*, more recent reports by *Cochrane* review, other review, and forthcoming WHO recommendation have identified 50 ug as the highest dose that should be used. The recommended dose by vaginal route is 25 ug every 4 hrs. however, excessive uterine contractility resulting in fetal distress is a cause for concern. Comparing the oral and vaginal administration of misoprostol, the oral administration is easier and has greater acceptability among women, convenience and lack of invasiveness. Fewer cervical examinations could also reduce the peripartum infection rates. Further, absorption is more rapid and possibly more predictable, with peak serum

concentration after oral administration of 34 min and a half life of 10-40 min. Peak serum concentration for vaginal administration is 60-80 min, and this level is sustained for up to 4 hrs. Oral administration, if proved safe and effective, could potentially reduce overall hospitalization time by permitting administration of the medication in an outpatient setting. Although the direct local effect of vaginal administration on cervical ripening may be advantageous, the shorter half life of oral delivery may be beneficial in the event of uterine hyperstimulation .

Aim of work

A comparison of orally administered Misoprostol with vaginally administered Misoprostol for cervical ripening & induction of labor.

Review Of Literature