

Physiological Strategies for Improving Defense Mechanisms of Maize Plant (Zea mays L.)

By Abdelaziz Atef Abdelaziz Ramadan

B.Sc. of Botany, Faculty of Science, Ain Shams University 2008

Supervised by Dr/ Sahar Ahmed El-Khawas

Associate Professor of Plant Physiology, Botany Department, Faculty of Science, Ain Shams University.

Dr/ Gen-Ichiro Arimura

Asscoiate Professor of Molecular Ecology, Graduate School of Science, Kyoto University.

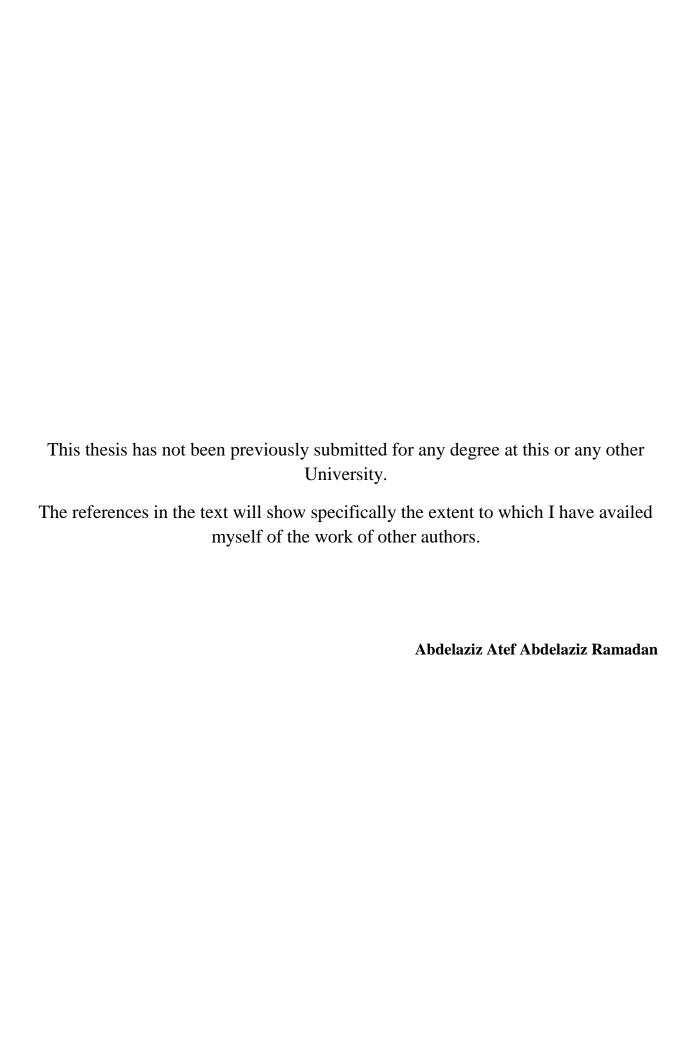
Dr/ Amr Hassan Nassar

Lecturer of Plant Physiology, Botany Department, Faculty of Science, Ain Shams University.

M.Sc. In Botany
Ain Shams University, Faculty of Science,
Botany Department
(2012)

Faculty of Science Botany Department

Physiological Strategies for Improving Defense Mechanisms of Maize Plant (*Zea mays* L.)


Thesis submitted for partial fulfillment of Master degree of Science in Botany (Physiology)

By
Abdelaziz Atef Abdelaziz Ramadan
B.Sc. (Botany)
(2008)

Ain Shams University
Faculty of Science
Botany Department
2012

Name: Abdelaziz Atef Abdelaziz Ramadan Title: Physiological Strategies for Improving Defense Mechanisms of Maize Plants (<i>Zea mays</i> L.) Degree: Master in Botany (Plant Physiology)				
Supervisors:	■ Dr. Sahar Ahmed El-Khawas. Associate Professor of Plant Physiology, Botany Department Faculty of Science Ain Shams University ■ Dr. Gen-ichiro Arimura Associate Prof. of Molecular Ecology, Graduate school of Science, Kyoto University Japan ■ Dr. Amr Hassan Nassar Lecturer of Plant Physiology, Botany department Faculty of Science Ain Shams University			
Arbitrators:				
	 Dr. Mohamed Abdo Khedr Shaddad Prof. of Plant Physiology Faculty of science Assuit University Dr. Refaat Mohamed Ali Prof. of Plant Physiology Faculty of Science Faiyum University Dr. Sahar Ahmed El-Khawas Associate Professor of Plant Physiology, Botany Department Faculty of Science Ain Shams University 			
	Prof. Mohamed El-sayed Tantawy Head of Rotany Department			
	Head of Botany Department Faculty of Science Ain Shams University			

To my lovely parents And sisters

Abdelaziz Ramadan

Acknowledgements

The ultimate praise and gratitude be to "Allah", the most merciful and omniscient for his amazing support and guide.

I wish to express my sincere appreciation and gratitude to **Dr. Sahar Ahmed Al-Khawas**, Associate Professor of Plant Physiology, Botany Department, Faculty of Science, Ain Shams University, for her supervision, continuous caring, fruitful discussion and guidance throughout the work. As I am very indebted to her for her patience and great effort in order to present the thesis in this form.

I would like to express my deep and sincere gratitude to **Dr. Genichiro Arimura**, Associate Professor of Molecular Ecology, Center for Ecological Research, Kyoto University, Japan, for providing his lab to carry out this research work, his supervision, his detailed and constructive comments and important support throughout this work.

I wish to express my worm and sincere thanks to **Dr. Amr Hassan Nassar,** Lecturer of Plant Physiology, Botany Department, Faculty of Science, Ain Shams University, for his supervision, kind help, patience, valuable suggestions and encouragement during this work.

My special gratitude to **Prof. Dr. Azza Saber el-shafey, Prof. Dr. Amira Hassanein** and **Pror.Dr. Mohamed Tantawy**, the former and current heads of Botany Department for their continuous support and help.

My special gratitude to all my teachers, colleagues and friends at the Department of Botany, Faculty of Science, Ain Shams University, who helped me a lot and provided a great support.

Special thanks to **Prof .Dr. Mostafa El-Khawas**, Professor of Biological Control, Biological Control Research Department, Agricultural Research Center.

I wish also to thank all my lab mates in the Center for Ecological Research, Kyoto University for encouraging and advising me throughout this work. In particular, I would like to thank Dr. Muroi Atsushi, Dr. Ozawa Rika and Mrs. Kikumi Katami for teaching me and providing a precious support.

Last but not least, a special thank goes to my **parents** and **sisters** for trusting me and giving me a constant support throughout my whole life and especially during this work.

Abdelaziz Ramadan

Contents

		Page
١.	Introduction and Aim of the work	1
۲.	Materials and Methods	Y £
۲,۱	Plants, herbivore and predator	Y £
۲,۱,۱	The plant materials	Y £
7,1,7	The herbivore	۲٦
۲,۱,۳	The parasitoid wasp	. *•
۲,۲	Methods	٣٢
۲,۲,۱	Plant-plant communication assay	. ٣٢
۲,۲,۲	Volatile analysis	٣0
۲,۲,۳	Induced resistance bioassay (performance of	f
	M. separate larvae)	3
۲,۲,٤	Bioassay for flight responses of parasitoid	
	wasps to maize plants (C. kariyai behavior).	٣٩
7,7,0	Quantitative estimation of the transcription	
	level for defense related genes	٠. ٤٠
۲,۲,۵,۱	RNA isolation	٤1
۲,۲,۵,۲	Reverse transcription and cDNA synthesis	£ £
7,7,0,7	The Real-Time PCR	££
7,7,7	Quantification of jasmonic acid (JA) and	
	jasmonoyl isoleucine (JA-Ile) using	
	LC/MS/Ms	٤٦
۲,۲,٦,۱	Extraction and determination of JA and	
	JA-Ile	٤٧

٣.	Results	٥,
٣,١	Priming of maize resistance by M. separata	
	-induced maize volatiles (HIPVs)	٥,
٣,١,١	Volatile emission analysis	٥,
٣,١,١,١	Volatile analysis of infested and uninfested	
	(control) emitter maize plants	٥,
٣,١,١,٢	Volatile analysis of receiver maize plants	
	after inter-plant communication assay	0
٣,١,٢	M. separata induced volatiles of HIPVs	
	exposed plants passively affect the	
	behavior of parasitic Cotesia kariyai waps	٦ ٤
٣,١,٣	HIPVs primed plants showed reduced	
	performance of M. separata larvae	
	(direct defense)	٦٧
٣,٢	Priming of maize resistance by transgenic-	
	tobacco airborne signals (<i>E</i>)-β-Ocimene	٧.
٣,٢,١	Volatile emission analysis	
	V1	
٣,٢,١,١	Volatile analysis of transgenic and wild	
	type tobacco emitter plants	٧١
٣,٢,١,٢	J	
	after tobacco-maize communication	V £
٣,٢,٢	(E)-β-ocimene-induced priming enhanced	
	the attractiveness of parasitic Cotesia karyai	
	wasps	۸۱
٣,٢,٣	(E) - β -ocimene primed plants showed	
	reduced performance of M. separata larvae	
	(direct defense)	٨٤
٣,٣	The memorization capacity of maize plants	
	for HIPVs priming signals	
	۸V	

٣,٣,١	Performance of M. separata larvae	
	**	
٣,٣.٢	The key regulator phyto-hormone of dresponses (JA) and it's conjugative form (Jalso indicate maize memorization capacity HIPVs	JA-Ile)
٣,٣.٣	Gene-level screening for maize	
	memory to HIPV-priming signal	91
٤.	Discussion	11.
٥.	Summary and Conclusion	170
٦.	References	140

Arabic abstract and summary (right side of the thesis)

List of Abbreviations

12-OPDA : 12-oxophytodienoic acid

13HPL : Fatty acid 13-hydroperoxide lyase

13HPOT : Linolenic acid 13-hydroperoxide

ABA : Abscisic acid

ACC : 1-aminocyclopropane-1-carboxylic acid

Act1 : Actin1 (housekeeping gene)

ADH : Alcohol dehydrogenase

AOS : Allene oxide synthase

CHAT : Acetyl CoA-(Z)-3-hexen-1-ol acetyl

transferase

COI1 : CORONATINE INSENSITIVE 1

CR : Control volatile-receiver plants

Cys-PI : Cystatin-like protease inhibitor

DMADP : Dimethylallyl diphosphate

DMNT : (E)-4,8-dimethyl-1,3,7-nonatriene

ET : Ethylene

FACs: Fatty acid amino acid conjugates

FDP : Farnesyl diphosphate

GDP : Geranyl diphosphate

GGDP : Geranylgeranyl diphosphate

GLVs : Green leaf volatiles

HAMPs : Herbivore associated molecular patterns

Hex-: hexenols

Hex-Ac : (Z)-3-hexen-1-yl acetate

Hex-Ac : hexenyl acetate

Hex-al : hexenals

HIPVs : Herbivore induced plant volatiles

HR : HIPV-receiver plants

IDP : isopentenyl diphosphate

IM : Inner membrane

JA : Jasmonic acid

JACs : Jasmonic acid amino acid conjugates

JA-Ile : Jasmonoyl isoleucine

JAR1 : JASMONATE RESISTANT 1

JAZ : Jasmonate ZIM domain protein

JMT : Jasmonic acid carboxyl methyltransferase

LOX : Lipoxygenase

LP : Lipase

MeJA : Methyl jasmonic acid

MEP pathway : 2-C-methyl-D-erythritol 4-phosphate pathway

MVA pathway : Mevalonic acid pathway

OM : Outer membranes

OPR : 12-oxophytodienoic acid reductase

OR : (E)- β -ocimene-receiver plants

PIs : proteinase inhibitors

PlOS : *Phaseolus lunatus* Ocimene synthase

PPO: polyphenoloxidase

SA : Salicyilic acid

SAR : Systemic acquired resistance