Management of Postoperative Complications In Liver Transplant Patients

Essay

Submitted in Partial Fulfillment of Master Degree in Intensive Care

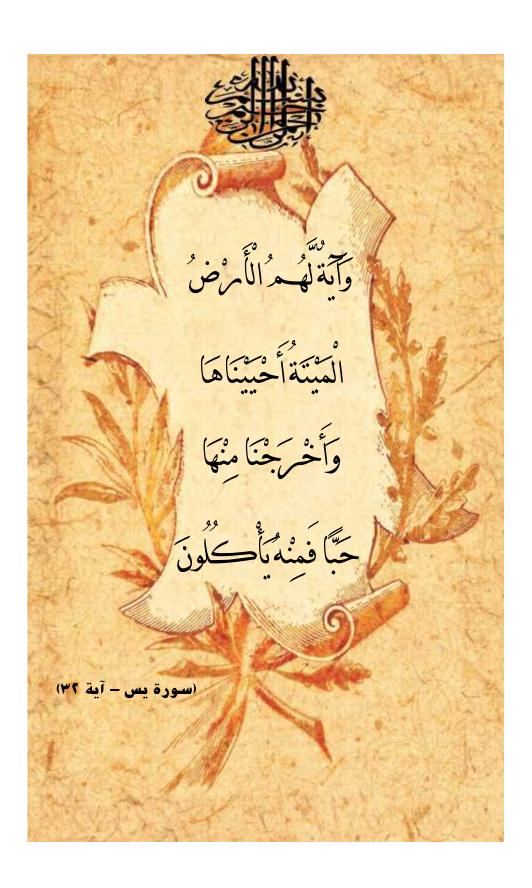
By

Ayman Mahmoud Mahmoud Alzamzamy (M.B.B.ch.)

Under Supervision of

Prof. Dr. Hany Mohamed El-zahaby

Professor of Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University


Prof. Dr. Salwa Omar El-khattab Amin

Assistant Professor of Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Fatma Mohamed El-Wakeel

Lecturer of Intensive Care Theodor belhars research institute

Department of Anaeshesia,
Intensive Care and Pain Management
Faculty of Medicine
Ain Shams University
2012

CONTENTS

<u>Page</u>
Acknowledgement
List of tables
List of figures
List of abbreviation
1-Introduction
2-Chapter 1: Physological Considerations
3-Chapter 2: Peri-operative Care
4-Chapter 3: Post-operative Complications & Management
5-Summary
6-References
7-Arabic Summary

First and foremost, thanks are due to **Allah**, the most kind and merciful.

Words will never be able to express my deepest gratitude to all those who helped me during preparation of this study.

I gratefully acknowledge the sincere advice and guidance of **Prof. Dr. Hany Mohamed El-Zahaby,** Professor of Anesthesia and Intensive care, Faculty of Medicine, Ain Shams University, for his constructive guidance, encouragement and valuable help in accomplishing this work.

I am greatly honored to express my deep appreciation to **Prof. Dr.Salwa Omar El-Khattab Amin,** Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for her continuous support, sincere supervision, direction and meticulous revision of this work.

I am really thankful to **Dr. Fatma Mohamed El-Wakeel,** Lecturer of Intensive care, Theodor Bilharse Research Institute for her great help, advice, precious time, kindness, and moral support.

Ayman Mahmoud Al-Zamzamy

LIST OF TABLES

<u>r</u> :	<u>age</u>
Table 1: Functions of the liver	9
Table 2: Functions of bile acid	1
Table 3: Determination of Child-Turcotte-Pugh Scores for Patients with Chronic Liver Disease	3
Table 4: Donor evaluation protocol	0
Table 5: Phases of Living Donor Evaluation 4	1
Table 6: Ventilatory Parameters for postoperative extubation	1
Table 7: Criteria for Immediate Postoperative Extubation after Liver Transplantation	2
Table 8: Guidelines for antithrombotic therapy for prevention and treatment of deep venous thrombosis	0
Table 9: Nutrition Protocol after liver transplantation 60	6
Table 10: Side effects of immunosuppressive agents 78	8
Table 11: Classification of post operative complications 80	0
Table 12: Surgical complications after liver transplantation: type and onset	2
Table 13: Causes for early postoperative haemorrhage 11:	5
Table 14: Vascular complications	6

LIST OF TABLES (CONT.)

		<u>Page</u>
Table	15: Predisposing factors for hepatic artery thrombosis	119
Table	16: Predisposing factors for portal vein thrombosis	121
Table 1	17: Causes for vena cava obstruction	122
Table 1	18: Biliary tract complications	125

LIST OF FIGURES

<u>Page</u>
Figure 1: Anterior and visceral surfaces of the liver7
Figure 2: Functional division of the liver
Figure 3: Indications of liver transplantation
Figure 4: Hepatic artery stenosis
Figure 5: Hepatic artery thrombosis (CHA:common hepatic artery SMA:superior mesenteric artey)
Figure 6: Damage to the hepatic artery during the donor procedure
Figure 7: Portal vein stenosis Quoted from
Figure 8: Venacavogram showing kinking of the vena cava with near complete obstruction at the side of the suprahepatic venocaval anastomosis
Figure 9: Biliary leak at the anastomotic site. Reoperation and hepaticojejunostomy will be the most effective solution
Figure 10: T-tube-associated leak, which will be remedied by opening the T-tube

LIST OF ABBREVIATIONS

ACE	: Angiotensin-Converting Enzyme
ADH	: Alcohol dehydrogenase
ADV	: Adefovir Dipivoxil
AIDS	: Acquired Immunodeficiency Syndrome
ALT	: Alanine Transaminase
APCs	: Antigen Presenting Cells
AR	: Acute rejection
ARDS	: Acute respiratory distress syndrome
AST	: Aspartate Transaminase
ATG	: Antithymocyte globulin
ATN	: Acute Tubular Necrosis
ATP	: Adenosine triphosphate
AZA	: Azathioprine
B ₂ -MG	: B2-microglobin
ВТР	: B-trace protein
CIN	: Calcineurin inhibitors
CMV	: Cytomegalovirus
CNS	: Central Nervous System
CO	: Cardiac Output
CT	: Computerized Tomography
СТР	: Child Turcotte
CVP	: Central Venous Pressure
СҮР	: Cytochrome P450

DEAFF	: Detection of Early Antigen Fluorescent Foci
DEXA	: Dual Energy X-Ray Absorptiometry
ECG	: Electrocardiography
EEG	: Electroencephalogram
ERCP	: Endoscopic Retrograde Cholangio- Pancreatography
ESLD	: End Stage Liver Disease
FHF	: Fulminant hepatic failure
G\Kg	: Gram per Kilogram
GABA	: γ-aminobutyric acid
GFR	: Glomerular Filtration Rate
GI	: Gastrointestinal
H2	: Histamine 2 receptors
HAART	: Highly Active Antiretroviral Therapy
НАТ	: Hepatic Artery Thrombosis
HBIg	: Hepatitis B Immune Globulin
HBIG	: Hepatitis B immune globulin
HB _S Ag	: Hepatitis B surface Antigen
HBV	: Hepatitis B Virus
НСС	: Hepatocellular Carcinoma
HCV	: Hepatitis C virus
HE	: Hepatic Encephalopathy

HIV-PAH : HIV-related pulmonary arterial hypertension : Human Leucocyte Antigens HLA : 3-hydroxy-3-methylglutaryl coenzyme A HMG-CoA : Hepatorenal syndrome HRS I.U International Unit **ICP** Intra Cranial Pressure : Intensive Care Unit **ICU** IL : Interleukin : International Normalized Ratio INR **IPVD** : Intrapulmonary Vascular Dilatations : Intravenous IV: The inferior vena cava IVC : Lamivudine LAM : Low density lipoproteins LDL : Living donor liver transplantation LDLT : Liver transplantation LT : Monoclonal Antibodies mAbs MAP : Mitogen-activated protein : Model for end-stage liver disease MELD : Microsomal ethanol-oxidising system **MEOS** : Mililiter ml **MMF** : Mycophenolate Mofetil

mosm	: Miliosmole
MPA	: Mycophenolic acid
MRI	: Magnetic Resonance Imaging
MRSA	: Methicillin Resistant Staphylococcus Aureus
mTOR	: Mammalian Target of Rapamycin
NF-ĸB	: Nuclear factor-kappa B
NH ₃	: Ammonia
NH ₄	: Ammonium
NICE	: National Institute for Clinical Excellence (UK)
NSAIDs	: Non-steroidal anti-inflammatory drugs
OLT	: Orthotropic liver transplantation
OR	: Operating room
PaO ₂	: Arterial oxygen tension
PBC	: Primary biliary cirrhosis
PBMC	: Peripheral blood mononuclear cells
PCR	: Polymerase chain reaction
PCWP	: Pulmonary capillary wedge pressure
PEEP	: Positive end-expiratory pressure
PELD	: Pediatric end-stage liver disease
PNF	: Primary nonfunction
PO	: Per orum
PPHTN	: Porto-pulmonary hypertension

PPI	: Proton Pump Inhibitor
PVT	: Portal vein thrombosis
RBP	: Retinol-binding protein
RNA	: Ribonucleic Acid
SVR	: Systemic Vascular Resistance
T3	: Tri-iodothyronine
T4	: Thyroxin
TAC	: Tacrolimus
TG	: ThymoglobuIin
TPN	: Total Parenteral Nutrition
U/S	: Ultrasound
UK	: United Kingdom
UNOS	: United Network for Organ Sharing
US	: United States
V.C	: Vasoconstriction
V.D	: Vasodilation
VLDL	: Very low density lipoproteins
WBC	: White blood cell

INTRODUCTION

Liver transplantation is the treatment of choice for various forms of end-stage liver disease, including viral liver disease, liver malignancies, acute liver failure, and certain metabolic derangements. What is also being seen in recent years is that sicker patients are undergoing transplantation. Sicker patients before transplant translate into sicker, more complicated patients after transplant. Frequently, these patients undergo transplantation when they have comorbidities and organ dysfunction (Markmann et al., 2008).

The unique pathophysiology of patients with end-stage liver disease has important implications for their critical care treatment, particularly in the postoperative state (Doria et al., 2006). After transplantation, careful management to avoid complications and intervene early is necessary. Common postoperative complications include graft dysfunction, vascular thrombosis, biliary tract complications, infection, rejection, electrolyte neurologic injury, imbalances, and drug interactions. A multidisciplinary approach to care including the critical care nursing is necessary for successful long-term outcomes (Roberts, 2002).

The early post-operative period is a crucial time when strict monitoring and sustainment of cardiorespiratory function, frequent assessment of allograft performance, timely recognition of unexpected complications and prompt treatment of extrahepatic organ system dysfunction is mandatory. Intensive care management of liver transplanted patients mainly centers on rapid hemodynamic stabilization, correction of coagulopathy, early weaning from mechanical ventilation, proper fluid administration, kidney function preservation, graft rejection prevention, and infection prophylaxis (*Marchioro*, 2002).

Historical Perspectives:

Today, liver transplantation is a lifesaving procedure for patients with chronic end-stage liver disease and acute liver failure (ALF) when there are no available medical and surgical treatment options. Thomas Starzl performed the first three human liver transplantation at the University of Colorado in 1963, but did not achieve 1-year survival until 1967. Over the next 15 years, relatively few liver transplantation were performed, and the 1-year survival rate was only 30% until the late 1970s and early 1980s when the implementation of cyclosporine- based immunosuppression led to doubling of the 1-year survival rate. In 1983, these improved outcomes led to the decision at a National Institutes of Health Consensus Development Conference that liver transplantation was no experimental procedure and deserved longer broader application in clinical practice. This meeting initiated the modern era of liver transplantation and resulted in the

propagation of liver transplantation across the United States and around the world (*Groth*, 2000).

Since the early 1980s, there have been significant advances in all aspects of liver transplantation, including recipient selection, donor management, operation technique, immunosuppression, and postoperative management of liver recipients. These changes, which have marked the evolution from an experimental technique to established and routine therapy, have resulted in enormous improvements in outcome. The overall 1-year survival for adult and pediatric deceased donor liver transplantation (DDLT) is now expected to be in excess of 85%, with 5- and 10-year survival in excess of 70% and 60%, respectively (*Dausset, 2000*).

The success of liver transplantation as treatment for most types of acute and chronic liver failure has led to increased referrals for transplantation in the setting of a relatively fixed supply of cadaveric donor organs. At the end of 2006, more than 17,000 patients were listed for liver transplantation in the United States. Despite performance of more than 6,000 liver transplantations annually in the United States during the past several years only one thirds of candidates received liver transplantation and almost 2,000 deaths have occurred annually in patients listed for liver transplantation during past 6 years (*Starzl*, 2002).