

The Effect of Dust Fall from Abo Zabal Factory of Fertilizers on The Vegetation of a Side Branch of River Nile Passing Through Abo Zabal Region.

A thesis

Submitted for the Degree of Doctor of Philosophy of Science in Botany (Ecology)

By

Hend Ahmed Kamel Ali Saleh

B. Sc Botany 2005 (Fac. of Science, Ain Shams University)M. Sc. Botany 2011(Fac. of Science, Ain Shams University)

Ain Shams University
Faculty of Science
(2016)

The Effect of Dust Fall from Abo Zabal Factory of Fertilizers on The Vegetation of a Side Branch of River Nile Passing Through Abo Zabal Region.

A thesis

Submitted for the Degree of Doctor of Philosophy of Science in Botany (Ecology)

By

Hend Ahmed Kamel Ali Saleh

B. Sc Botany 2005 (Fac. of Science, Ain Shams University)

M. Sc. Botany 2011(Fac. of Science, Ain Shams University)

Ain Shams University

Supervisors:

Prof. Dr. Raifa Ahmed Hassanein

Professor of Plant Physiology (Botany Department)

Faculty of Science. Ain Shams University.

Dr. Amal Ahmed Morsy

Associated Professor of Plant Ecophysiology (Botany Department)

Faculty of Science. Ain-Shams University.

Ph.D. Thesis

Name: Hend Ahmed Kamel Ali Saleh

Title: "The Effect of Dust Fall from Abo Zabal Factory of Fertilizers on The Vegetation of a Side Branch of River Nile Passing Through Abo Zabal Region"

Degree: Doctor of Philosophy (Botany, Plant Ecology)

Supervisors:

Prof. Dr. Raifa Ahmed Hassanein

Professor of Plant Physiology

Botany Department.

Faculty of Science.

Ain Shams University.

Dr. Amal Ahmed Morsy

Associated Professor of Plant Ecology.

Botany Department.

Faculty of Science.

Ain-Shams University.

TABLE OF CONTENTES

Content	Page
➤ List of Tables	-
➤ List of Figures	-
➤ List of Plates	-
➤ Abstract	1
➤ Introduction	4
➤ Review of literature	10
➤ Study area	37
Climatic conditions of the studied area	40
> Study species	43
➤ Materials and methods	47
1. Ecological studies	47
1-1.Floristic relations	47
1-2. Classification	48
1-3. Community Similarity	48
1-4. Soil analysis	48
Soil sampling	48
 Physical and chemical properties of the soil 	49
1-5. Assessment of heavy metals contamination	51
1-6 Measurement of air pollutants	54
2. Plant analysis	56
Chemical analysis of plant material	56
 Determination of elements 	55
Bioaccumulation factor	57

 Leaf dust accumulation 	58
 Degree of succulence 	58
 Determination of total ash content 	58
Content	Page
 Extraction and estimation of photosynthetic pigments 	58
 Extraction and estimation of carbohydrates 	60
 Extraction and estimation of nitrogenous constituents 	61
 Extraction and estimation of total phenols 	68
 Extraction and estimation of total flavonoids content 	69
 Extraction and estimation of total reduced glutathione 	70
 Extraction and estimation of ascorbic acid 	71
 Extraction and estimation of lipid peroxidation product 	71
 Extraction and estimation of hydrogen peroxide 	72
 Extraction and assaying activity of antioxidant enzymes 	72
 Evaluation of total antioxidant capacity 	76
 Air Pollution Tolerance Index 	77
 Statistical Analysis 	78
Results	79
1-Ecological studies	79
1-1.Floristic relations	79
1-2. Classification	89
1-3. Community Similarity	93
1-4. Soil analysis	94
1-5. Heavy metal pollution	101
1-6 Air pollution parameters	106

2-Plant analysis	
Heavy metals	107
Dust accumulation	116
 Succulence percentage 	116
Ash content	119
Content	Page
Photosynthetic pigments	119
 Soluble sugars and polysaccharides 	123
 Nitrogenous constituents 	142
 Total phenolic and total flavonoids 	152
Total glutathione	153
Ascorbic acid	153
Malondialdehyde	153
 Hydrogen peroxide (H₂O₂) 	168
Antioxidant enzymes	168
 Total antioxidant capacity 	169
Leaves extract pH	188
Relative water content	188
 Air Pollution Tolerance Index (APTI) 	188
Discussion	195
➤ Summary	222
References	226
> Arabic summary	

LIST OF FIGURES

Table No.	Table title	Page No.
1a	Climatic condition of the study area during 2012	35
1b	Historical weather of the study area	36
2	List of the recorded families with their species, life form, duration, floristic category, English name and Arabic name.	78
3	Chorological analysis of the examined species as numbers and percentages of the species recorded in the study area.	84
4	Means of importance value (I.V.) and presence (%) of selected species in the four vegetation groups derived after application of TWINSPAN.	88
5	Similarity and dissimilarity index of the vegetation comparing between different sites (F: Factory, 1, 2, 3 and 4: Km downwind from the factory) and control site during summer and winter.	90
6	Granulimetric analysis of soil profiles collected from different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory).	91
7	Mean values of soil reaction (pH), electrical conductivity (EC) mmohs ⁻¹ cm, field capacity (FC) %, Moisture content (SP) % and soluble ions content (μg/g dry wt.) in soil from different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km distance downwind from the factory) during summer	92

	and winter.	
8	Mean values of organic carbon (OC), humus content, available phosphorus and available nitrogen determined in soil collected from different sites (C: Control, F: Factory, 1, 2, 3 and 4 : Km distance downwind from the factory) during summer and winter.	96
9	Mean values of trace elements (1µg/g dry wt.) in soil from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km distance downwind from the factory) during summer and winter.	98
10	Enrichment factor (EF) of metals in the soil from different sites (F: Factory, 1, 2, 3 and 4: Km distance downwind from the factory) during summer and winter.	99
Table No.	Table title	Page No.
	Table title Contamination factor (CF) and pollution load index (PLI) of metals in the soil from different sites (F: Factory, 1, 2, 3 and 4: Km distance downwind from the factory) during summer and winter.	
No.	Contamination factor (CF) and pollution load index (PLI) of metals in the soil from different sites (F: Factory, 1, 2, 3 and 4: Km distance downwind from the factory) during	No.
No.	Contamination factor (CF) and pollution load index (PLI) of metals in the soil from different sites (F: Factory, 1, 2, 3 and 4: Km distance downwind from the factory) during summer and winter. Igeo values of investigated metals at different sites (F: Factory, 1, 2, 3 and 4: Km distance downwind from the factory) during	No. 100

	downwind from the factory) during summer	
	and winter.	
15	Mean values of elements in the deposited dust from the factory.	106
16	Mean values of Heavy metals (μ g/g dry wt.) in <i>Cyperus alopecuroides</i> from different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter (values with same litter in the same row are not significant). The values significant at p \geq 0.05	109
17	Bioaccumulation factor (BAF)for <i>Cyperus alopecuroides</i> from different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter.	110
18	Mean values of heavy metals $(1\mu g/g)$ dry wt.) in <i>Pluchea dioscoridis</i> from different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter (values with same litter in the same row are not significant). The values significant at $p \ge 0.05$	111
19	Bioaccumulation factor (BAF) for <i>Pluchea dioscoridis</i> from different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter.	112
20	Mean values of heavy metals $(1\mu g/g)$ dry wt.) in <i>Ricinus communis</i> from different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	113

Table No.	Table title	Page No.
21	Bioaccumulation factor (BAF) for <i>Ricinus communis</i> from different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter.	114
22	Mean values of Dust accumulation per hour (g m ⁻² leaf area) on the surface of leaves from the plant species (<i>C. alopecuroides</i> , <i>P. dioscoridis</i> and <i>R. communis</i>) at different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	115
23	Effect of the dust from Abo Zabal factory on succulence percentage in <i>Cyperus alopecuroides</i> , <i>Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter.	117
24	Effect of the dust from Abo Zabal factory on ash content (g/100g dry wt.) in <i>Cyperus alopecuroides, Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km distance downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	120
25	Effect of the dust from Abo Zabal factory on chlorophyll a content (mg/g fresh wt.) of <i>Cyperus alopecuroides, Pluchea dioscoridis</i> and <i>Ricinus communis</i> from	124

	different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	
26	Effect of the dust from Abo Zabal factory on chlorophyll b content (mg /g fresh wt.) of <i>Cyperus alopecuroides, Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	126
27	Effect of the dust from Abo Zabal factory on chlorophyll a+b content (mg /g fresh wt.) of <i>Cyperus alopecuroides, Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter.	128
Table No.	Table title	Page No.
28	Effect of the dust from Abo Zabal factory on carotenoids content (mg/g fresh wt.) of <i>Cyperus alopecuroides, Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	130
29	Effect of the dust from Abo Zabal factory on total photosynthetic pigments content (mg/g fresh wt.) of <i>Cyperus alopecuroides</i> ,	132

	Pluchea dioscoridis and Ricinus communis from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	
30	Effect of the dust from Abo Zabal factory on Chlorophyll a to phaeophytin a (%) of <i>Cyperus alopecuroides, Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	134
31	Effect of the dust from Abo Zabal factory on soluble sugar content (mg /100 g fresh wt.) of <i>Cyperus alopecuroides, Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	136
32	Effect of the dust from Abo Zabal factory on Polysaccharides content (mg /100 g fresh wt.) of <i>Cyperus alopecuroides</i> , <i>Pluchea dioscoridis</i> and <i>Ricinus communis</i>	138

	from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	
Table No.	Table title	Page No.
33	Effect of the dust from Abo Zabal factory on Total carbohydrates content (mg /100 g fresh wt.) of <i>Cyperus alopecuroides</i> , <i>Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	140
34	Effect of the dust from Abo Zabal factory on water-soluble protein content (mg / g fresh wt.) of <i>Cyperus alopecuroides</i> , <i>Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values	144

Table No.	Table title	Page No.
36	Effect of the dust from Abo Zabal factory on total protein content (mg / g fresh wt.) of <i>Cyperus alopecuroides</i> , <i>Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites (C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	148
35	Effect of the dust from Abo Zabal factory on water-insoluble protein content (mg / g fresh wt.) of <i>Cyperus alopecuroides</i> , <i>Pluchea dioscoridis</i> and <i>Ricinus communis</i> from different sites(C: Control, F: Factory, 1, 2, 3 and 4: Km downwind from the factory) during summer and winter. (Values with same litter in the same row are not significant).	146