

Synthesis and Characterization of Cationized Wool Fabrics to Acquire New Properties

A Thesis Submitted for the Requirement of Ph.D. Degree in Chemistry

Amira Adel Bayoumy Moustafa
M.Sc.2005
(Helwan University)

Faculty of Science
Chemistry Department
Cairo University
2010

Approval Sheet for Submission

Title of the Ph.D. Thesis: "Synthesis and Characterization of Cationized

Wool Fabrics to Acquire New Properties"

Name of the Candidate: Amira Adel Bayoumy Moustafa

This thesis has been approved for submission by the supervisors:

Signatures

1. Prof. Dr. M. A. Abou-State

Professor of Organic Chemistry Chemistry Department, Faculty of Science, Cairo University

2. Prof. Dr. Sherif M. Sherif

Professor of Organic Chemistry Chemistry Department, Faculty of Science, Cairo University

3. Prof. Dr. S. M. Gawish

Professor of Textile Chemistry and Technology, Textile Research Division, National Research Centre

Prof. Dr. Mohamed M. Shoukry

Chairman of Chemistry Department Faculty of Science, Cairo University

Abstract

Candidate Name: Amira Adel Bayoumy Moustafa

Title of the Ph.D. Thesis: "Synthesis and Characterization of Cationized Wool

Fabrics to Acquire New Properties"

Degree: Ph.D. 2009/2010

Modification of woolen fabrics were achieved by several methods such as grafting β -cyclodextrin, β -cyclodextrin derivatives (monochlorotriazinyl β -cyclodextrin) and low molecular weight deacetylated chitosan in the presence of citric acid (CA) as a crosslinking agent using the pad-dry-cure technique at different conditions (times and temperatures). Wool fabrics were also modified with some quaternary ammonium salts. The improved properties of the modified wool fabrics were evaluated using urea bisuphfite solubility test, tensile strength, elongation and crease recovery angle. Yellowness index and scanning electron microscopy (SEM) were performed. Dyeing properties of the modified wool fabrics were studied using acid and reactive dyes. The biocidal activity of the modified and unmodified (control) wool samples was evaluated against moth larvae and some species of bacteria (*Escherichia coli G*- and *Staphylococcus aureus G*+ and fungi (*Candida albicans* and *Aspergillus flavus*).

Plasma treatment was used to modify the surface properties of wool fibres for partial removal of the scales and the lipid layer. The effect of low pressure pseudo discharge plasma in oxygen as a working gas, on the dyeing properties of untreated and pretreated woolen fabrics were investigated. Different exposure times (1-5 minutes) of oxygen plasma were effected to improve the dyeability, the washing and light fastness properties of the dyed woolen fabrics. The plasma treatment improved the hydrophilicity and the performance of wool fabrics. The wettability of the treated specimens was increased by increasing the exposure time to plasma.

Key words: woolen fabric, grafting, citric acid, β -cyclodextrin, monochlorotriazinyl β -cyclodextrin, chitosan, phosphorous salts, pseudo oxygen plasma, exposure time, dyeing, antimicrobial activity, SEM.

Supervisors:

- 1. Prof. Dr. M. A. Abou State
- 2. Prof. Dr. Sherif M. Sherif
- 3. Prof. Dr. S. M. Gawish

Prof. Dr. Mohamed M. Shoukry
Chairman of Chemistry Department
Faculty of Science,
Cairo University

Aim of the Work

The present research aims to produce some modified cationic woolen fabrics of enhanced biocidal, insecticidal resistance, hydrophilicity (increase in wettability, the water absorption) and dyeing properties. Grafting of wool was done by chemical means, plasma alone and plasma / grafting. Analyses and characterization of the modified wool fabric, compared to the unmodified one were performed. These analyses include chemical, physical and biological analyses such as urea bisulphite solubility test, crease recovery angle, fabric resistance to moth and some species of microorganisms (*Escherichia coli G-, Staphylococcus aureus G+, Candida albicans, Aspergillus flavus*), Also, fastness to wash, SEM as well as the mechanical properties of the fabric were studied.

Acknowledgements

The author wishes to express her gratitude to Prof. Dr. M. A. Abou State and Prof. Dr. Sherif M. Sherif, Professors of Organic Chemistry, Chemistry Department, Faculty of Science, Cairo University for sponsoring and their great interest to the thesis.

Thanks and appreciations to Prof. Dr. S. M. Gawish, Professor of Textile Chemistry and Technology, Textile Research Division, National Research Centre (NRC) for the suggestion, supervision, discussion and guidance of the thesis.

Greeting and thanks to Dr. A. M. Ramadan and S. M. Abo-El-Ola, Associate Researcher Professors, Textile Research Division, National Research Centre (NRC), for their follow up, advices and discussion throughout the work.

Thanks are also extended to the Staff and Authorities of Chemistry Department, Faculty of Science, Cairo University and Textile Research Division, National Research Centre (NRC).

CONTENTS

Approval Sheet	ii
Abstract	iii
Aim of the Work	iv
Acknowledgment	v
List of Figures	xiii
List of Tables	xvi
Summary	XX
CHAPTER I: General Overview of Wool	
1.1. Wool Types and Characteristics	1
1.2. Wool composition	1
1.3. Physical characteristics of wool	4
1. 3.1. Colour	4
1.3.2. Length	4
1.3.3. Luster	4
1.3.4. Density and specific gravity	4
1.3.5. Dimensional stability	4
1.3.6. Strength	4
1.3.7. Elasticity	4
1.3.8. Resiliency	5
1.3.9. Crimp	5
1.3.10. Absorbency	5
1.3.11. Thermal and conductance properties	5
1.4. Morphology of wool	5
1.4.1. The cuticle	6
1.4.2. The cortex	8
1.4.3. The cell membrane complex	9

1.5. Chemical constitution of wool	9
1.6. Chemical structure of wool	9
1.6.1. Crosslinkages	11
1.6.2. Covalent Crosslinkages	11
1.6.3. Non-covalent bonds	11
1.6.3.1. Hydrogen bonds	12
1.6.3.2. Ionic bonds	12
1.6.3.3. Hydrophobic bonds	12
1.7. The structure of wool protein	12
1.7.1. Primary structure of proteins	14
1.7.2. Secondary structure of proteins	14
1.7.3. Tertiary structure of proteins	17
1.8. Effect of moisture on wool	17
1.9. Action of acids on wool	17
1.10. Effect of alkalis on wool fibres	18
1.11. Action of air and sunlight on wool	18
1.12. Biological Activities and deterioration of wool	19
1.13. Wool Dyeing19	
1.13.1. Acid dyes	20
1.13.2. Reactive dyes	21
1.13.3. Metal complex dyes	22
1.13.4. Chrome dyes	23
CHAPTER II: Use of Citric Acid as a Crosslinking Agent for	
Grafting	
β-Cyclodextrin onto Wool Fabric	
2.1. Introduction	24
2.1.1. Synthesis of cyclodextrins	26
2.1.2. Toxicological properties of cyclodextrins	26
2.1.3. Uses of cyclodextrins	27

	2.1.4. Uses of cyclodextrins in textiles	28
2.2.	Experimental	31
	2.2.1. Materials	31
	2.2.2. Chemicals	32
	2.2.3. Dyestuffs	32
	2.2.4. Methods	32
	2.2.5. Dyeing Procedure	33
2.3.	Measurements	34
	2.3.1. Yellowness index	34
	2.3.2. Washing test	34
	2.3.3. Urea bisulfite solubility test	34
	2.3.4. Dry crease recovery angle measurement	34
	2.3.5. Scanning Electron Microscopy	35
	2.3.6. Tensile Strength and Elongation Tests	35
	2.3.7. Anti microbial Activity	35
2.4.	Results and Discussion	36
	2.4.1. Treatment of wool fabrics with β-Cyclodextrin and mono-	
	chloro- triazinyl β-Cyclodextrin	35
	2.4.1.1. Effect of citric acid treatment on wool fabric add-on	35
	2.4.1.2. Effect of mixture of CA / β -CD treatment on wool fabric	
	add- on	36
	2.4.1.3. Treatment of wool with monochlorotriazinyl β -	
	Cyclodextrin	42
	2.4.1.4. Comparison between grafting β -CD & mono-chloro-	
	triaziny l β - onto woo l	42
	2.4.2. Effect of different concentrations of sodium	
	hypophosphite (SHP) and sodium dihydrogen phosphate	
	(SDP) on percentage add- on of β -CD onto wool fabrics	42

	2.4.3. Effect of citric acid and p- cyclodextrin concentrations on	
	the add-on and yellowness index	47
	2.4.3.1. Effect of citric acid concentration	47
	2.4.3.2. Effect of β -cyclodextrin concentration	48
	2.4.4. Urea bisulphite solubility test	49
	2.4.5. Dry Crease Recovery Angle Measurement	50
	2.4.6. Tensile Strength and Elongation	51
	2.4.7. Wool Dyeing	52
	2.4.8. Antimicrobial Activity	53
	2.4.9. Scanning Electron Microscopy	55
2.5	. Conclusion	55
CH	IAPTER III: Grafting of Chitosan onto Woolen Fabric using	
Cit	ric Acid as Crosslinking Agent	
3.1	. Introduction	56
3.2	. Experimental	60
3.2	.1. Materials	60
3.2	.2. Chemicals	60
3.2	.3. Dyestuffs	60
3.2	.4. Method	61
3.2	.5. Wool Dyeing	62
3.3	. Measurements	62
	3.3.1. Yellowness index	62
	3.3.2. Washing Test	62
	3.3.3. Urea bisulfite solubility test	62
	3.3.4. Dry crease recovery angle measurement	62
	3.3.5. Scanning Electron Microscope (SEM)	62
	3.3.6. Tensile Strength and Elongation Tests	62
	3.3.7. Anti -microbial Activity	62
3.4	. Results and Discussion	63

	3.4.1. Treatment of wool fabric with chitosan	63
	3.4.1.1. Effect of citric acid treatment on wool fabric	63
	3.4.1.2. Effect of CA / chitosan treatment on percentage add-on	
	and yellowness index of wool fabrics	66
	3.4.1.3. Effect of chitosan concentration on the wool fabric add-	
on		67
	3.4.1.4. Effect of citric acid concentration on the wool fabric	
	add-on	67
	3.4.2. Urea bisulphite solubility test	69
	3.4.3. Dry crease recovery angle measurement	70
	3.4.4. Tensile Strength and Elongation	71
	3.4.5. Wool Dyeing	72
	3.4.6. Antimicrobial Activity	73
	3.4.7. Scanning Electron Microscopy	76
3.5.	Conclusion	76
	APTER IV: Use of Some Quaternary Ammonium Salts as	
	imicrobial and Moth Proofing Agents Introduction	78
4.2.	Antimicrobial Agents	79
4.3.	Experimental	
	Experimental	82
	4.3.1. Materials	82 82
	4.3.1. Materials	82
	4.3.1. Materials 4.3.2. Chemicals	82 82
	4.3.1. Materials4.3.2. Chemicals4.3.3. Method	82 82 83
	4.3.1. Materials4.3.2. Chemicals4.3.3. Method4.3.4. Synthesis of Quaternary ammonium compounds	82 82 83
	 4.3.1. Materials 4.3.2. Chemicals 4.3.3. Method 4.3.4. Synthesis of Quaternary ammonium compounds 4.3.4.1. Synthesis of N, N'-bis(3-chloro-2- 	82 82 83 84
	 4.3.1. Materials 4.3.2. Chemicals 4.3.3. Method 4.3.4. Synthesis of Quaternary ammonium compounds 4.3.4.1. Synthesis of N, N`-bis(3-chloro-2-hydroxypropyl)ethylene diammonium chloride 	82 82 83 84

4.3.5.1. Wool reduction	85
4.3.5.2. Reaction of reduced wool with N,N`-bis(3-chloro-2-	
hydroxy propyl) ethylene diammonium dichloride (II) or	
<i>N,N`-bis(3-chloro-2-</i> hydroxy propyl)	
hexamethylenediammonium dichloride (IV)	86
4.3.6. Washing fastness test	87
4.3.7. Wool moth proofing test	87
4.3.8. Antimicrobial Activity	87
4.4. Results and Discussions	88
4.4.1. Moth Proofing test	88
4.4.2. Antimicrobial Activity	88
4.4.3. Wool treatment with synthesized quaternary ammonium	
salts	91
Effect of the N,N`-bis (3-chloro-2-hydroxypropyl) ethylene	
diammonium dichloride and N,N'-bis (3-chloro-2-	
hydroxypropyl) hexamethylene diammonium dichloride on the	
add on onto wool	91
4.4.4. Washing Fastness	91
4.4.5. Application of Cationized wool fabrics (V) & (VI)	93
4.4.5.1. Effect of treatment on Moth proofing	93
4.4.5.2. Biocidal Activity	93
4.4.5.3. Comparison between N,N`-bis(3-chloro-2-	
hydroxypropyl) ethylene diammonium dichloride and N,N	
bis(3-chloro-2-hydroxy propyl) hexamethylene diammonium	
dichloride	99
4.5. Conclusion	99
CHAPTER V: The Effect of Low Temperature Plasma on the Properties of Wool and Chitosan Treated Wool Fabrics	

5.1. Introduction.....

5.1.1. Types of plasma	100
5.1.2. Mechanism of Plasma treatment	103
5.1.3. Types of plasma treatment	103
5.1.4. Advantages of plasma treatment	106
5.1.5. Disadvantages of plasma treatment	107
5.1.6. Factors affecting plasma treatment	107
5.1.7. Fields of plasma application	107
5.1.8. Fields of application in textiles	108
5.1.9. Application of plasma technology in textile industry	108
5.2. Experimental	111
5.2.1. Materials	111
5.2.2. Chemicals	111
5.2.3. Dyestuffs	111
5.2.4. Methods	112
5.2.4.1. Treatment of wool samples with chitosan	112
5.2.4.2. Plasma Apparatus	112
5.2.4.3. Plasma exposure	113
5.2.4.4. Dyeing of wool fabrics	113
5.2.5. Measurements	114
5.2.5.1. Wettability Test	114
5.2.5.2. Washing Fastness	114
5.2.5.3. Colour Fastness to light	114
5.3. Results and Discussion	114
5.3.1. Wettability Test	114
5.3.2. Wool Dyeing	115
5.3.2.1. Dyeing LTP pretreated wool with Acid Dye	115
5.3.2.2. Dyeing LTP pretreated wool with 1:2 Metal complex	
Dye	116

118
121
121
122
123
124
124
125 127 130

List of Figures

Fig 1: Chemical structure of wool fibre	7
Fig 2: chemical bonds of woolfibres	13
Fig 3: Bonding of an acidic wool dye on the wool fibre	23
Fig 4: Schematical presentation of the fixation of cyclodextrin derivatives with hydrophobic a) on reactive groups b) on a polymer surface on top of the fibre surface.	29
Fig 5: Structural formula of C.I. Acid Red 52 and C.I. Acid Violet 1	32
Fig 6: Add on of wool fabrics treated with 10% versus temperature and time of treatment	37
Fig 7: Wool fabric treated with 10% CA / 6% SHP at different temperatures and times treatment	37
Fig 8: Effect of treatment time on the β-CD percentage add- on onto wool fabric at 160°C	38
Fig 9: Effect of treatment time on the β- CD percentage add-on onto wool fabric at 170°C	38
Fig 10: Effect of treatment time on the β- CD percentage add on onto wool fabric at 175°C	39
Fig 11: Effect of treatment time on the β-CD percentage add-on of onto wool fabric at 180°C	39
Fig 12: Effect of treatment temperature on the β -CD percentage add on of onto wool fabrics at 5 min curing time	40
Fig 13: Effect of treatment time on the mono chloro triazinyl β -CD percentage add - on onto wool fabric at 160°C	44
Fig 14: Effect of treatment time on the mono chloro triazinyl β-CD percentage add on onto wool fabric at 170°C	44

Fig 15: Effect of treatment time on the mono chloro triazinyl β- CD percentage add on onto wool fabric at 175°C	45
Fig 16: Effect of treatment time on the mono chloro triazinyl β-CD percentage add on onto wool fabric at 180°C	45
Fig 17: Effect of treatment temperature on the mono chloro triazinyl β- CD percentage add on onto wool fabric at 5 min curing time	46
Fig 18: Ttreatment temperatures on the β- CD & mono chloro triazinyl β- CD percentage add on onto wool fabric for 5 min curing time	46
Fig 19: Antimicrobial test for the treated woolen fabrics	54
Fig 20: SEM of untreated control sample and modified wool fabric with a mixture of 10% β -CD /10% CA.	55
Fig 21: The structure formulae of C. I. Acid Dye 1 and C. I. Reactive Dye 24	61
Fig 22: Effect of curing time on the percentage add on onto wool fabrics treated with 10% CA / 6% SHP compared to 10% CA only	64
Fig 23: Effect of curing time on the percentage add on onto wool fabrics treated with 10% CA / 6% SHP compared to 10% CA only at 165°C	64
Fig 24: Effect of curing time on the Percentage add on onto wool fabrics treated with 10% CA / 6% SHP compared to 10% CA only at 170°C	65
Fig 25: Effect of different curing conditions (time and temperature) on the add on of wool samples treated with 6% CA / 1 % chitosan	68
Fig 26: Effect of 10%CA on the percentage add on onto woolen fabric using 0.25% and 0.5% chitosan at 165°C	68
Fig 27: antimicrobial test for the treated woolen fabrics	75