# CT Enterography in Evaluation of Different Small Bowel Diseases

#### Essay

Submitted for partial fulfillment of master degree in Radiodiagnosis

By

#### **Osama Alsayed Mahmoud Hussein**

M.B. B.ch. South Valley University

Supervisors

#### **Prof. Dr. Omar Hussein Omar**

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

#### Dr. Sameh Abd Alraouf Mahdy

Assistant professor of Radiodiagnosis
Faculty of Medicine
Ain shams University

Faculty of Medicine Ain shams University 2011

# تصوير الأمعاء الدقيقة بالأشعة المقطعية ودوره في تشخيص الأمراض المختلفة

توطئه للحصول على رسالة ماجستير في الاشعه التشخيصية

مقدمه من:
الطبيب/ أسامة السيد محمود حسين
بكالوريوس الطب والجراحة
كليه الطب ـ جامعه جنوب الوادي

تحت إشراف

أ.د/عمر حسين عمر

أستاذ الاشعه التشخيصية كليه الطب ـ جامعه عين شمس

د/سامح عبدالرءوف مهدي

أستاذ مساعد الاشعه التشخيصية كليه الطب \_ جامعه عين شمس

قسم الاشعه التشخيصية كليه الطب جامعه عين شمس 2011

## **Summary and Conclusion**

CT enterography is a powerful tool in the evaluation of small bowel disease. Adequate luminal distention can usually be achieved with oral ingestion of a large volume of neutral enteric contrast material in the evaluation of diseases affecting the mucosa and bowel wall, thereby obviating nasogastric intubation and making CT enterography a useful, well-tolerated study in this setting (*Paulsen et al.*, 2006).

The differential diagnosis of the abnormal small bowel is extensive, including variants and pitfalls, inflammatory conditions, and neoplasms. Optimal evaluation of an abnormal small bowel loop is facilitated when the small bowel is well distended, IV contrast material has been administered, and thin-section CT is used. CT enterography should be used when a clinical concern exists for small-bowel disease. When an abnormal small-bowel loop is recognized, a pattern approach as discussed herein can be used to narrow the differential diagnosis (*Macari et al.*, 2007).

MDCT enterography significantly improved the diagnostic confidence of observers for the interpretation of small bowel obstruction as compared with the use of axial CT images alone. In addition, the use of MDCT enterography was superior to conventional fluoroscopic findings with the use of gastrografin as an oral contrast agent. In appropriately selected patients, the use of gastrografin as an oral contrast agent for 3DCT is a safe and feasible technique for precise evaluation of known or suspected small bowel obstruction (*Hong et al.*, 2009).

Small bowel Crohn's disease can be effectively and efficiently evaluated with CTE. It detects complications of CD with better accuracy than SBFT and, in some cases, is better at detecting small bowel involvement as well. Important CTE

# Acknowledgement

Thanks first and last to **Allah**, the God who created us, as we owe him for his great care, support and guidance in every step in our life.

I would like to express my profound gratitude and cordial appreciation to **Prof. Dr. Omar Hussein** 

Omar Professor of radiology, Faculty of medicine, Ain Shams University, for his moral support, valuable supervision and for enabling me to fulfill this work. He is not only my professor to whom I am very grateful, but is also a human to whom I wish always the best of everything.

I would like also to thank **Dr. Sameh Abd**AlRaouf Mahdy' Assistant professor of radiology,

Faculty of medicine, Ain Shams University, for his continued advice, constructive and valuable suggestions, meticulous follow up and supervision of every step of this work till its final form.

Osama Alsayed Mahmoud.

# **Contents**

| List of abbreviations                                 |     |
|-------------------------------------------------------|-----|
| List of figures                                       |     |
| List of tables                                        |     |
| Introduction and Aim of the work                      | 1   |
| Chapter one: Anatomy of the small bowel               | 4   |
| Chapter two: Pathology of small bowel diseases        | 12  |
| Chapter three: Technique of CT enterography           | 26  |
| Chapter four: Manifestations of different small bowel |     |
| diseases                                              | 40  |
| Chapter five: Illustrated cases                       | 65  |
| Discussion                                            | 87  |
| Summary and conclusion                                | 91  |
| References                                            | 93  |
| Arabic summary                                        | 104 |

#### List of abbreviations

| 2D    | Two Dimensional.                  |
|-------|-----------------------------------|
| 3D    | Three Dimensional.                |
| CD    | Crohn's Disease                   |
| CT    | Computed Tomography.              |
| CTA   | CT Angiography.                   |
| CTE   | CT Enterography.                  |
| Fig.  | Figure.                           |
| GIT   | Gastro-Intestinal Tract.          |
| GISTs | Gastro-Intestinal Stromal Tumors. |
| HU    | Hounsfield Unit.                  |
| IV    | Intra-venous.                     |
| KV    | Kilo-voltage.                     |
| mAs   | Milli-Ampere per second           |
| MDCT  | Multi-Detector CT.                |
| mL    | Milli-Litre.                      |
| mL/s  | Milli-Litre per second.           |
| MPR   | Multi-planer Reformation.         |
| ms    | Milli-second.                     |
| MSCT  | Multi-slice CT.                   |
| No.   | Number.                           |
| SBFT  | Small Bowel Follow Through.       |
| SBO   | Small Bowel Obstruction.          |
| SMA   | Superior Mesenteric Artery.       |
| SMV   | Superior Mesenteric Vein.         |
| TB    | Tuberculosis.                     |

# List of figures

| Fig.<br>No. | Figure title                                                                                                     | Page<br>No. |
|-------------|------------------------------------------------------------------------------------------------------------------|-------------|
| 1-1         | Illustration showing the duodenum and pancreas.                                                                  | 4           |
| 1-2         | Illustration of various parts of the small intestine.                                                            | 7           |
| 1-3         | Illustration of arrangement of mesenteric vessels.                                                               | 8           |
| 1-4         | Contrast material-enhanced CT scans of the abdomen demonstrate uniform enhancement of the small bowel and colon. | 10          |
| 1-5         | Coronal volume-rendered 3D multi-detector row CT scans to demonstrate the normal small bowel.                    | 10          |
| 1-6         | Contrast enhanced axial CT scans show loops of small intestine.                                                  | 11          |
| 2-1         | Illustration of some causes of mechanical intestinal obstruction.                                                | 13          |
| 2-2         | Crohn's disease. Common pathological findings.                                                                   | 16          |
| 2-3         | Radiation enteritis. Mucosal changes.                                                                            | 18          |
| 3-1         | Diagram shows the difference between single-row detector and multiple-row detector CT designs.                   | 29          |
| 3-2         | Diagram shows the difference between single-row detector and multiple-row detector CT designs.                   | 38          |
| 4-1         | Erect plain film of the abdomen intestinal obstruction.                                                          | 20          |
| 4-2         | Axial CTE and coronal reconstruction SBO.                                                                        | 42          |
| 4-3         | Axial CTE ("C"- or "U"-shaped configuration in closed-loop obstruction.                                          | 43          |

#### **List of figures (Cont.)**

| Fig.<br>No. | Figure title                                                                                               | Page<br>No. |
|-------------|------------------------------------------------------------------------------------------------------------|-------------|
| 4-4         | Axial CTE scan shows the "whirl" sign.                                                                     | 44          |
| 4-5         | Left para-duodenal hernia in a 55-year-old woman Contrast-enhanced CT scan of the upper abdomen            | 45          |
| 4-6         | Active CD with mural and serosal hyper-<br>enhancement surrounding edematous<br>submucosa.                 | 46          |
| 4-7         | Bowel-to-bowel fistula and an abscess in the abdominal wall in Crohn's disease.                            | 47          |
| 4-8         | Chronic CD with fat deposition (circle) in the wall of the terminal ileum.                                 | 48          |
| 4-9         | Axial CTE: adjacent to the thickened bowel loops there are small dots seen in the mesentery (comb sign).   | 50          |
| 4-10        | Relapsed active Crohn's disease multidirectional fistulous tracts.                                         | 51          |
| 4-11        | Adenocarcinoma of the small bowel. Axial CTE shows a mass located in the bowel wall.                       | 53          |
| 4-12        | Axial CTE scan shows adenocarcinoma as irregular thickening of the bowel loop with tumoral lymph nodes.    | 53          |
| 4-13        | Contrast-enhanced axial image (A) and coronal reconstruction (B) of a patient with carcinoid.              | 55          |
| 4-14        | Small bowel lymphoma axial and coronal images.                                                             | 56          |
| 4-15        | GIST. Axial CTE scan shows a poorly enhanced polypoid lesion in the jejunum and non bulky lymphadenopathy. | 57          |

# **List of figures (Cont.)**

| Fig.<br>No. | Figure title                                                                                                                                                                     | Page<br>No. |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4-16        | Enlargement of the loops of the small intestine and enlarged mesenteric lymph nodes metastases.                                                                                  | 58          |
| 4-17        | Celiac disease ulcerative jejunitis thickened bowel wall with mucosal hyper-enhancement.                                                                                         | 59          |
| 4-18        | CTE Angiography sagittal reconstruction at the region of the SMA showing luminal narrowing.                                                                                      | 61          |
| 4-19        | Axial CTE of ischemic bowel with segmental absence of bowel enhancement.                                                                                                         | 62          |
| 4-20        | Occlusion of the superior mesenteric artery after aortic aneurysm repair.                                                                                                        | 62          |
| 4-21        | Late stage bowel infarction. Presence of gas in the branches of mesenteric veins pneumatosis.                                                                                    | 63          |
| 4-22        | Patients with bowel infarction. Gas in hepatic portal branches is peripherally located.                                                                                          | 63          |
| 4-23        | Thick-slab volume-rendered image of CT angiography shows chronic mesenteric ischemia due to small pseudo-aneurysm.                                                               | 65          |
| 5-1         | Small bowel obstruction due to ovarian cancer recurrence of the small bowel walls.                                                                                               | 66          |
| 5-2         | Ileo-ileac intussusception secondary to a small intestinal lipoma.                                                                                                               | 58          |
| 5-3         | Coronal enteric phase CT enterography with positive luminal contrast agent reveals luminal narrowing mural thickening and the prominence of the mesenterial vessels "comb sign". | 70          |

#### **List of figures (Cont.)**

| Fig. | Figure title                                                                                                                                            | Page<br>No. |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5-4  | Axial and coronal reformatted CT images demonstrate large ileo-cecal fistula due to Crohn's disease.                                                    | 72          |
| 5-5  | A small abscess and fistula arising between<br>two loops of thickened inflamed ileum due to<br>Crohn's disease.                                         | 74          |
| 5-6  | Axial and Coronal reformatted image shows segmental involvement of abnormal loop in pelvis due to acute radiation enteritis.                            | 76          |
| 5-7  | Coronal CT enterography image shows a jejunal adenocarcinoma.                                                                                           | 78          |
| 5-8  | Coronal image showing a mesenteric mass with desmoplastic reaction multiple strictures secondary to serosal metastasis causing small bowel obstruction. | 80          |
| 5-9  | Axial and coronal reformatted CT image better shows segmental area of homogeneous thickening lymphoma.                                                  | 82          |
| 5-10 | Coronal CT enterography image shows multiple GISTs with hepatic metastases.                                                                             | 84          |
| 5-11 | Coronal CT enterography image shows mural thickening along an ileal segment secondary to serosal metastases.                                            | 86          |

# List of tables

| Table No. | Table title                                | Page No. |
|-----------|--------------------------------------------|----------|
| 1         | Comparison between jejunum and ileum.      | 6        |
| 2         | Parameters for MDCT of the small intestine | 31       |

#### Introduction

CT enterography is a new imaging modality that has distinct advantages over conventional CT, wireless capsule endoscopy, and barium examination. CT enterography is noninvasive and allows rapid mapping of disease activity before endoscopy and in cases where the endoscope cannot reach the diseased segment. CT enterography is readily available, is operator independent, and allows evaluation of extraenteric complications of small bowel disease (*Tochetto and Yaghmai*, 2009).

Compared with the traditional small bowel follow-through examination, CT enterography has several advantages: it displays the entire thickness of the bowel wall, it allows examination of deep ileal loops in the pelvis without superimposition, and it permits evaluation of the surrounding mesentery and perienteric fat. CT enterography also allows assessment of solid organs and provides a global overview of the abdomen (*Paulsen et al.*, 2006).

This technique utilizes multidetector scanners with high spatial and temporal resolution; multiplanar reconstructions; and large volumes of enteric contrast to provide bowel distension (*Huprich and Fletcher*, 2009).

Enteric contrast agents for cross-sectional enterography have been examined by multiple investigators. Because water can be absorbed over the length of the small bowel, agents that prohibit small bowel resorbtion are generally preferred (*Fletcher*, 2009).

Several oral negative contrast media can be used in this technique as polyethylene glycol (*Fletcher*, 2009) iso-osmtic mannitol (*Zhang et al.*, 2005), or lactulose solution (*Arslan et al.*, 2005). Also 0.1% barium suspension can be used (*Baker et* 

#### Introduction and Aim of the Work

al., 2009), combined with the use of intravenously administered contrast material (Paulsen et al., 2006).

CT enterography can be useful in the diagnosis of several small bowel diseases as Crohn's disease, ulcerative colitis, small bowel tumors, celiac disease (*Paulsen et al.*, 2006), obscure gastrointestinal bleeding (*Huprich et al.*, 2008), post-operative adhesions, mesenteric ischemia and intussusception (*Zhang et al.*, 2005).

# Aim of the Work

The aim of this study is to emphasize the role of CT enterography in evaluation of different small bowel diseases.

## **Anatomy of the Small Bowel**

#### **Gross Anatomy:**

The small intestine is a convoluted tube, extending from the pylorus to the ileo-colic valve, where it ends in the large intestine. It is about 7 meters long, and gradually diminishes in size from its commencement to its termination. It is surrounded above and at the sides by the large intestine; a portion of it extends below the superior aperture of the pelvis and lies in front of the rectum. It is in relation, in front, with the greater omentum and abdominal parietes, and is connected to the vertebral column by a fold of peritoneum, the mesentery. The small intestine is divisible into three portions: the duodenum, the jejunum, and the ileum (*Gray*, 2008).

<u>The Duodenum</u> (Fig. 1-1) is the shortest (25 cm.), the widest, and the most fixed part of the small intestine, and has no mesentery, being only partially covered by peritoneum. Its course presents a remarkable curve, somewhat of the shape of an imperfect circle, so that its termination is not far removed from its starting-point (*Gray*, 2008).

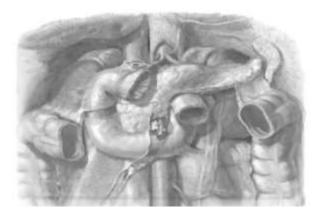



Fig. 1-1: Illustration showing the duodenum and pancreas (*Quoted from Netter*, 2008).