Digital Imaging And Communication In Medicine (DICOM): the old, the new and the future.

Essay
Submitted for partial fulfillment of MSc. In Radiodiagnosis by
Dr. Alaa Wahba Gad El Manzalawy

Supervisors

Prof. Sameh A.Z. Hanna
Professor of Radiodiagnosis
Faculty of Medicine
Cairo University

Dr. Manal Halim Wahba
Lecturer of Radiodiagnosis
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2008

Abstract

PACS (Picture Archiving and Communication System) is an Information management system for archiving and managing images in radiology department. It is a computerized electronic system, which entirely replaces conventional x-ray and hard copy films by acquiring, archiving, transmitting and displaying digital images on a network of workstations throughout the hospital.

DICOM, which stands for Digital Imaging and Communications in Medicine, is a standard that was developed to "promote communication of digital image information, regardless of device manufacturer" within a radiological environment.

Key Words:

Compate Aided Diagnosis – Cothode Ray Tube – Altrasound .

Table Of Contents

	PAGE
♣ ACKNOWLEDGEMENT	1
↓ TABLE OF CONTENTS	//
↓ LIST OF ABBREVIATIONS	///
	/V
↓ LIST OF TABLES	V
↓ INTRODUCTION	VI
▲ AIM OF WORK	VII
♣ REVIEW OF LITERATUR	
► INTRODUCTION.	1
▷ DIGITAL IMAGING FUNDAMENTALS	5
-DIGITAL IMAGE	
-SHADES OF GRAY	
-IMAGE PROCESSING	
► IMAGE ACQUISITION	
- INTRODUCTION TO IMAGE ACQUISITION	11
 INTEGRATION WITH PACS 	
■ DICOM	
 RIS AND HIS INTERFACING FOR 	
DATA VERIFICATION	
■ MODALITY WORKLIST	
- ACQUISITION OF THE NATIVE DIGITAL	17
CROSS-SECTIONAL MODALITIES	
- ACQUISITION OF PROJECTION RADIOGRAPHY.	20
FILM DIGITIZERS.	
- COMPUTED RADIOGRAPHY	25

Table Of Contents

PROCESS DESCRIPTION	
– DIGITAL RADIOGRAPHY.	27
PROCESS DESCRIPTION	
SYSTEM CHARACTERISTICS	
- INDIRECT VERSUS DIRECT CONVERSION	29
- CR VERSUS DR	33
- FUTURE TRENDS IN IMAGE ACQUISITION	37
PACS ARCHITECTURE	
-WHAT IS PACS ARCHITECTURE?	41
-KEY TERM DEFINITIONS	
 CORE SERVERS. 	
 DATABASE 	
■ HL7 SERVER	
 MODALITY WORKLIST 	
 DICOM SERVER 	
 IMAGE DISTRIBUTION SERVERS 	
WORKSTATIONS	
-CLUSTERING	47
-COMPARISON OF PACS ARCHITCTURES	48
► PACS ADVANTAGES	54
THE DICOM STANDARD	77
- HISTORY OF DICOM	78
- THE PARTS OF DICOM	<i>85</i>
-THE DICOM FILE STRUCTURE	95
- WHAT DOES DICOM DO FOR RADIOLOGY	99
► TELERADIOLOGY	
- GOALS	103
- QUALIFICATIONS OF PERSONNEL	104
•	
- EQUIPMENT SPECIFICATIONS	<i>105</i>

Table Of Contents

A. ACQUISITION OR DIGITIZATION	
B. COMPRESSION	
C. TRANSMISSION	
D. DISPLAY CAPABILITIES	
E. ARCHIVING AND RETRIEVAL	
F. SECURITY	
G. RELIABILITY AND REDUNDANCY	
- OUTCOMES OF TELERADIOLOGY SYSTEMS	111
↓ SUMMARY AND CONCLUSION	114
♣ REFERENCES	119
▲ ARARIC SIIMMARY	

LIST OF ABBREVIATIONS

ACR American College of Radiology CAD Computer Aided Diagnosis **CARDS** Computer Aided Radiological Decision Support System **CCD Charged Couple Device** CD-ROM Compact Disk-Read Only memory **CPU Central Processing Unit** CR Computed Radiography **CRT** Cathode Ray Tube CT Computed Tomography 2D Two Dimensional 3D Three Dimensional Digital Imaging and Communication in Medicine Dicom **DQE Detective Quantum Efficiency** DR Digital Radiography DVD Digital Video Disk **EMR Electronic Medical Record** HL7 Health Level 7 **HIPAA** Health Insurance Portability and Accountability Act HIS **Hospital Information System HTML** Hypertext Markup Lamguage IHE Integrated Healthcare Enterprise **IODs** Information Object Definitions International Standards Organization ISO IT Information Technology LAN Local Area Network LCD Liquid Crystal Display **MDCT** Multidetector Computed Tomography **MIP Maximum Intensity Projection**

List Of Abbreviations

MinIP	Minimum Intensity Projection
MRI	Magnetic Resonance Imaging
MRN	Medical Record Number
MTF	Modulation Transfer Factor
NEMA	National Electrical Manufacturers Association
PACS	Picture Archiving and Communication System
PET	Positron Emission Tomography
RAID	Redundant Array of Inexpensive disks
RAM	Randon Access Memory
RIS	Radiology Information System
RSNA	Radiological Society of North America
SARS	Severe Acute Respiratory Syndrome
SCP	Service Calss Provider
SCU	Service Class User
SOP	Service Object Pair
SQL	Structured Query Lannguage
TCP/IP	Transmission Code Protocol/Internet Protocol
US	Ultrasound
WS	Workstation

List Of Figures

LIST OF FIGURES

Figure	Description	Page
no		no
1	Digital image coordinate system (pixels)	6
2	Visual representation of window level techniques	8
3	Diagram of how RIS, HIS, and PACS systems might interact upon scheduling an	17
	examination for image acquisition into PACS	
4	Schematic of a CR imaging system, screen, and scanner.	23
5	The image production steps involved in CR.	26
6	Schematic of a DR imaging system based on a "flat-panel" detector.	29
7	The image production steps involved in direct and indirect digital radiography detectors	31
8	Acquisition methods of DR systems: cross section of a direct flat-panel system	32
	Acquisition methods of DR systems: cross section of an indirect flat-panel system	33
10	Basic PACS components	43
	PACS architecture circa 1995	49
12	PACS architecture circa 2005	52
	Example of PACS computer tool: linear measurement of cardiothoracic ratio drawn onto soft copy chest image	59
14	(A) Digitally acquired soft copy chest image with grayscale window width and	59
	level set to give good penetration of the left lower lobe through the cardiac	
	silhouette. (B) Same image windowed to simulate an under exposed chest image	
	showing superficial soft tissues, but sub optimally showing structures behind the	
	heart	
	Graph showing the sigmoid relation between optical density and radiation exposure for conventional film-screen radiography	60

List Of Figures

16A	65-year-old man with history of lung cancer. Axial CT image through upper abdomen from chest CT initially described as normal	62
16B	65-year-old man with history of lung cancer. Same image as in A filmed at liver settings reveals hepatic lesion (arrow).	62
17A	83-year-old man with prostatic carcinoma. Axial CT image using soft-tissue settings through thoracic vertebral body that was not initially noted	63
17B	83-year-old man with prostatic carcinoma. Same image as in A filmed at bone settings reveals sclerotic lesion (arrow) probably representing metastasis	64
18	Single-monitor PACS display shows four different MR images from four different series of one examination	65
19	Renal artery MRI	68
20	Left Renal artery stenosis CT Angiography	69
21	CT Angiography of the lungs.	71
22	CT angiography of an arterio-venous malformation	72
23	Access to medical images in digital form	74
24	Typical DICOM network	86
25	Diagram illustrates a layered communication model, the seven-layer ISO-OS! Reference Model	93
26	Sample structure of the DICOM file.	96

List Of Tables

LIST OF TABLES

Table no	Description	Page no
1	General System Attributes for CR and DR for Radiographic Applications	35
2	Summary of Future Trends in image acquisition	40
3	Potential benefits of picture archiving and communication systems	55
4	Part 4 Service Class Names and relative Annex	89
5	Tangible and Intangible Benefits of Teleradiology	112-113

Acknowledgement

First and foremost, thanks God the most merciful and most beneficent to who I relate any success in achieving any work in my life.

It gives me the greatest pleasure to express my deepest gratitude and warmest thanks to **Professor.Dr. Sameh A.Z. Hanna**, Professor of Radiodiagnosis, Cairo University, for his kind supervision and valuable suggestions. Dedicating much of his time and encouraging guidance were the reason for enriching this work.

It seems very difficult to select the suitable words expressing my respect and appreciation to **Dr. Manal Halim Wahba**, Lecturer of Radiodiagnosis, Cairo University, for her valuable assistance, encouragement and helpful instructions throughout the work.

Lastly, I would like to extend my deep thanks to **my family** for their permanent help and support through every step in my life.

Introduction:

With the introduction of computed tomography (CT) followed by other digital diagnostic imaging modalities in the 1970's, and the increasing use of computers in clinical applications, the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) recognized the emerging need for a standard method for transferring images and associated information between devices manufactured by various vendors. These devices produce a variety of digital image formats. The American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) formed a joint committee in 1983 to develop a standard to:

- Promote communication of digital image information, regardless of device manufacturer
- Facilitate the development and expansion of picture archiving and communication systems (PACS) that can also interface with other systems of hospital information
- Allow the creation of diagnostic information data bases that can be interrogated by a wide variety of devices distributed geographically (HL7, 2000-NEMA, 2003).

The digital imaging and communication in medicine (DICOM) Standard is an evolving standard and it is maintained in accordance with the Procedures of the DICOM Standards Committee. Proposals for enhancements are forthcoming from the DICOM Committee member organizations based on input from users of the Standard. These proposals are considered for inclusion in future editions of the Standard. A requirement in updating the Standard is to maintain effective compatibility with previous editions (NEMA, 2003).

Introduction

For example, one of the recent supplements to the DICOM standard is supplement 23 which is an introduction to the structured reporting (SR) classes (NEMA, 2000), which are used for transmission and storage of clinical documents. The SR classes fully support both conventional free text reports and structured information, thus enhancing the precision, clarity, and value of clinical documentation. In addition, the SR standard provides the capability to link text and other data to particular images or waveforms and to store the coordinates of findings (NEMA 2003–Hussein et al, 2004).

Also, some software tools throughout the radiology community have been extended to incorporates features of a DICOM viewer. For example, the Microsoft power point. Although PowerPoint has become a ubiquitous presentation tool in medical imaging, it does not support the Digital Imaging and Communications in Medicine (DICOM) standard. Users must go through a laborious conversion process that includes guessing the appropriate brightness and contrast to convert 16bit DICOM images into 8-bit formats. A PowerPoint add-in was developed that incorporates features of a DICOM viewer into a presentation. Users can interactively manipulate large series of 16-bit images in stack mode with scroll, crop, zoom, and window width and level functions, as well as sort through images by location or series. Multiple DICOM image series can be placed on a single slide, and one can interactively scroll through stacks of images during a presentation to demonstrate imaging findings. The problem created by the varying contrast and brightness of different projector systems is overcome by interactively adjusting the image window level during presentations. Bone and lung window views can be shown without having to create separate images. Combining DICOM images into stacks as part of a PowerPoint presentation can result in a more effective and higher-quality presentation of medical images (Haider, 2003-Corl et al 2002).

Aim of work

The aim of this work is to provide an overview of the expansions of DICOM standard's scope, either the new supplements added to the DICOM standard or corrections made to maintain the standard. Also media (as DVD-R and E-mail attachments) or objects (as multi-frame MR or multi-frame CT) added to the DICOM standard. Also to explain how Advances in DICOM standard development and employment have paved the way to full-field digital community.

Review Of Literature

TECHNICAL ISSUES:

- ► INTRODUCTION
- → DIGITAL IMAGING FUNDAMENTALS
- ► IMAGE ACQUISITION
- ► PACS ARCHITECTURE
- ► PACS ADVANTAGES
- ► THE DICOM STANDARD
- ► TELERADIOLOGY

► INTRODUCTION

For more than 25 years the vision of the all-digital radiology department has been a beacon guiding radiologists, computer scientists, and industrial developers in creating the equipment and the standards necessary to achieve this goal. Many all-digital or mostly digital radiology departments exist today (Siegel EL et al, 2003) and serve as testimonies of the many

breakthroughs that have been required to meld historically disparate imaging and information systems together under