MANAGEMENT OF METASTATIC COLORECTAL CANCER TO LIVER

Essay

Submitted for Partial Fulfillment of Master Degree in General Surgery

By Akmal Isaq Temasawes M.B.B.Ch.

Under supervision of

Prof. Dr. Ashraf Farouk Abadeer

Professor of General Surgery Faculty of Medicine- Ain Shams University

Dr. Mohammed Aly Lasheen

Lecturer of General Surgery
Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2015

كيفية علاجأورام الكبد الثانوية نتيجة سرطان القولون والمستقيم

رسالة توطئة للحصول على درجة الماجستير في الجراحة العامة

مقدمة من

الطبيب /أكمل اسحق تيماساوس أمين

بكالوريوس الطب والجراحة

جامعة المنبا

تحت إشراف الأستاذ الدكتور/أشرف فاروق أبادير

> أستاذ الجراحة العامة كلية الطب- جامعة عين شمس

دكتور/ محمد على لاشين

مدرس الجراحة العامة كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٥

Table of Contents

List of Abbreviations	(ii)
List of Tables	(v)
List of Figures	(vi)
Introduction and Aim of Work	1
Anatomy of Colorectal Liver Metastasis	4
Pathophysiology of CRLM	14
Diagnosis of Colorectal Liver Metastasis	26
Treatment of Metastatic Colorectal Cancer to Liv	ver 54
Prognosis and Follow up	93
Conclusion and summary	105
References	107
Arabic summary	121

List of Abbreviations

E TOTA	E1
5-FU	Fluorouracil
5-FU/LV	Fluorouracil and leucovorin
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
CA 19.9	Carbohydrate Antigen 19-9, also called Cancer
	Antigen 19-9
CEA	Carcinoembryonic antigen
CEUS	Contrast enhanced ultrasonography
CNS	Central nervous system
CRP	C-reactive protein
CRLMs	Colorectal liver metastases
CRS	Clinical risk score
CSA-P	Colon-specific antigen-P
CT	Computed tomography
CVP	Central venous pressure
DIC	Disseminated intravascular coagulapathy
DNA	Deoxyribonucleic acid
EGF	Epidermal growth factor receptor-targeted
	agents
EHD	Extrahepatic disease
EMA	Epithelial membrane antigen
FDG	Fluoro-2-deoxyglucose
FDG-PET	Fluoro-2-deoxyglucose- positron emission
	tomography
FLR	Future liver remnant
FNH	Focal nodular hyperplasia
FOLFIRI	5-fluorouracil (5-FU), leucovorin, and
	irinotecan
FOLFOX	5-fluorouracil (5-FU), leucovorin, and

	oxaliplatin
HAI	Hepatic artery infusion
HCC	Hepatocellular carcinoma
ICG	Indocyanine green retention
IL-8	Interleukin-8
IOUS	Intraoperative ultrasound
IRT	Inflammatory response to tumor
IVC	Inferior vena cava
KRASgene	Kirsten rat sarcoma viral oncogene homolog
MAC	Modified Astler-Coller system
MAP	Mitogen-activated protein kinases
kinase	
MDCT	Multidetector computed tomography
MR	Magnetic resonance
MRCP	Magnetic resonant cholicystopancreatography
mRNA	Messenger ribonucleic acid
NC	Neoadjuvant chemotherapy
NIH	National Institutes of Health Consensus
	Development Program
NLR	Neutrophil-to-lymphocyte ratio
OS	Overall survival
PCA	Patient-controlled analgesia
PD-ECGF	Platelet-derived endothelial cell growth factor
PET	Positron emission tomography
PIK3CA	Phosphatidylinositol-4,5-bisphosphate 3-
	kinase, catalytic subunit alpha
PLF	Post-resectional liver failure
PT	Prothrombin time
PVE	Portal vein embolisation
R0	Margin-negative resection
R1	Margin-posetive microscopically

RECIST	Response evaluation criteria in solid tumors
	criteria
RFA	Radiofrequency ablation
RLV	Remnant liver volume
SGOT	Serum glutamic oxalacetic transaminase
SGPT	Serum glutamic pyruvic transaminase
SPECT	Single Photon Emission Computerized
	Tomography
TLV	Total liver volume
TNM	Tumor, lymph Node, and distant Metastasis
TSP	Thrombospondin
US	Ultrasonogragpy
VEGF	Vascular endothelial growth factor
VWF	Von Willebrand Factor

List of Tables

Table	Title	Page
Table -1	Comparison of staging systems for	27
	colorectal adenocarcinoma	
Table -2	Survival according to the size of the	70
	metastasis	
Table-3	Survival according to the number of	70
	the metastasis	
Table-4	Resection rates after chemotherapy in	77
	initially inoperable patients	
Table-5	Complications of liver resection	85
Table-6	Post hepatectomy complications	88
	compared between five randomized	
	studies	
Table-7	Results of repeat hepatectomy for	90
	recurrent colorectal liver metastasis	

List of Figures

Figure	Title	page
1	Liver segmentation	9
2	Nomenclature for first order division	10
	anatomy and resections.	
3	Nomenclature for second order division	11
	anatomy and resections	
4	Nomenclature for third order division	12
	anatomy and resections	
5	The metastatic cascade	17
6	Importance of the angiogenic process in	22
	primary and metastatic tumor growth	
7	Comparison of CT and contrast enhanced	37
	US	
8	Patterns of liver metastases at CEUS	38
9	IOUS – Unresectable colorectal metastasis	41
	of the 6th segment of the right lobe	
10	IOUS – Small metastasis to the left lobe	41
11	IOUS – Two metastases in the right hepatic	42
	lobe	

12	Colorectal liver metastatic deposit at CT	43
	scan	
13	Contrast-enhanced CT scan in a patient with	44
	colorectal liver metastases	
14	Fusioned FDG-PET/CT image shows uptake	47
	of FDG in a focus in the right side of the	
	abdomen	
15	Two surgically confirmed small liver	47
	metastases from colorectal cancer in a	
	patient who had chemotherapy 16 days	
	before PET/CT	
16	Axial CT scan image vs. Coronal image	48
	from a PET scan	
17	Liver metastases from colorectal cancer and	50
	multiple liver cysts	
18	Liver metastases. A case against liver biopsy	53
19	Schematic illustrations of standard hepatic	66
	resections	
20	Multicentric study conducted by the French	69
	association of surgery comparing the	
	postoperative survival rate after resection of	
	bilobar versus unilobar colorectal liver	

	metastasis	
21	The relationship between complete	81
	radiological response after chemotherapy	
	and pathological response after hepatic	
	resection	
22	Cryosurgery probes freezing a colorectal	84
	liver metastases	
23	Response to chemotherapy	100

First of all, I should express my deep thanks to Allah, without his great blessing, I would never accomplish my work, and to whom I relate any success in achieving any work in my life.

I would like to express my sincere appreciation and deepest gratitude to Prof. Dr. Ashraf Farouk Abadeer professor of General Surgery, Ain-Shams University, for his meticulous advice, continuous encouragement and valuable instructions, help, all through this work, honest assistance and active guidance and the precious time he had given in follow up of this work.

I am deeply grateful to Dr. Mohammed Aly Lasheen lecturer of General surgery, Ain Shams University, of every word and every step in this work have been kindly arranged by his sincere, effort and care.

My truthful affection and love to My Family and My beloved wife who were and will always be by my side all my life.

Akmal Isaq

Introduction

Colorectal cancer is the third most common malignancy worldwide, with over 1.2 million new cases diagnosed each year. Despite decreasing mortality rates in several western countries, this neoplasm still represents the second leading cause of cancerrelated mortality, with 608,700 deaths attributed to this disease in 2008. (*Jemal A et al.*, 2011)

Epidemiologic data indicate that more than half of the patients develop distant metastases during the course of their disease, with the liver involved in most cases. In such patients, hepatic resection has become the standard of care and, currently, it remains the only single treatment modality offering hope for a cure. Rather disappointingly, only a minority of patients are suitable for resection. (*De Jong MC et al.*, 2009)

The complex decisions required to determine respectability are best made in the setting of an interdisciplinary team that includes surgeons experienced in liver surgery. Preoperative evaluation requires a complete medical evaluation to determine the patient's suitability for surgery as well as detailed anatomic imaging to determine the location of the liver tumors and to exclude extra hepatic metastasis. Radiological evaluation is needed not only to identify extra hepatic disease but also to assess the adequacy of liver parenchyma after surgery. In addition to the patient evaluation, liver function tests are evaluated to assess the synthetic function of the liver; combined with radiological findings, these tests can aid in the decision-making process. (Taylor R and Fong Y, 2007)

Margin-negative (R0) resection of limited metastatic disease, in conjunction with systemic antineoplastic agents, is the primary treatment strategy, leading to long survival times for appropriately selected patients. There is debate over whether the primary tumor and secondaries should be removed at the same time or in a staged manner. (Aloia TA et al., 2007)

Chemotherapy is effective in converting some unresectable liver metastases into resectable disease, with a correspondingly better survival outcome. However, the ideal chemotherapy with or without biological agents and when it should be administered in the course of treatment are uncertain. The role of neoadjuvant chemotherapy in initially resectable liver metastases is controversial. Local delivery of chemotherapy, with and without surgery, can lead to longer disease-free survival times, but it is not routinely used with curative intent. (Abdalla EK et al., 2004)

In recent years, the number of surgical candidates has increased to approximately 20% of all stage IV patients. This change has occurred owing to the recognition that surgically resecting colorectal liver metastases (CRLMs) may substantially improve long-term survival and, mostly, as a consequence of the evolution of the definition of resectability. (*Kopetz S et al., 2009*)

In fact, as the safety of liver resection has improved, advanced surgical techniques have been introduced and efficient chemotherapy regimens have become available, surgeons have challenged the traditional criteria used to define which patients can be considered resectable. Nowadays, selection criteria focus only on the remaining liver and on the possibility of completely resecting all tumors with one or two consecutive operations. (*Charnsangavej C et al.*, 2006)

As the indications for hepatectomy broaden, the possibility of accurately predicting outcomes within the wide spectrum of the disease is essential to guide treatment decisions and to stratify patients for clinical trials based on the individual risk of recurrence or death. (*House MG et al.*, 2010)

Aim of the Work

To review the recent modalities in diagnosis and surgical treatment of liver metastases from colorectal cancer.

Anatomy of Colorectal Liver Metastasis

Embryology:

The liver primordium is formed in the third week of gestation as an outgrowth of endodermal epithelium (known as the hepatic diverticulum, or liver bud). The connection between the hepatic diverticulum and the future duodenum narrows to form the bile duct, and an outpouching of the bile duct forms into the gallbladder and cystic duct. Hepatic cells develop cords and intermingle with the vitelline and umbilical veins to form hepatic sinusoids. Simultaneously, hematopoietic cells, Kupffer cells, and connective tissue form from the mesoderm of the septum transversum. The mesoderm of the septum transversum connects the liver to the ventral abdominal wall and to the foregut. As the liver protrudes into the abdominal cavity, these structures are stretched into thin membranes, ultimately forming the falciform ligament and the lesser omentum, respectively. The mesoderm on the surface of the developing liver differentiates into visceral peritoneum except superiorly, where contact between the liver and mesoderm (future diaphragm) is maintained, forming a bare area devoid of visceral peritoneum. (Ruiz-Casado A and Pereira F, 2006)

Incidence and prevalence:

Colorectal cancer is the third most common cancer and the third leading cause of cancer related mortality in the United States. Colorectal cancer is also very common in Western Europe, Australia and New Zealand, whereas the age standardized incidence rate of colorectal carcinoma is very low in India and Africa. There seems to be an association of higher incidence rates in colorectal cancer with increasing affluence. Over the past decade, colorectal cancer rates have modestly decreased or