RECENT ADVANCES IN ASSISITED REPRODUCTIVE TECHNOLOGY

ESSAY

Submitted in Partial Fulfillment for The Master Degree (M.Sc.) in **Obstetrics and Gynecology**

By

Hala Nabil Mohamed Elemady

Resident of Obstetrics and Gynecology (MB.B.Ch) Faculty of Medicine, Cairo University

Supervised By

Prof. Dr. Samia Hamed Khalil Seleha

Professor of Obstetrics and Gynecology Faculty of Medicine, Cairo University

Ass. Prof. Dr. Heba Ali ElSwah

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine, Cairo University

Dr. Ahmed Mohamad Abd Elhak

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2007

بسم الله الرحمن الرحيم الرحيم

ABSTRACT

The knowledge of reproductive medicine has expanded rapidly since the birth of Louise Brown, the first baby to be conceived by in vitro fertilization, which was performed by Professors Steptoe and Edwards in Bournhall, England, in 1978. In vitro fertilization means the fertilization of an oocyte with sperm outside the body. Several drugs are used to hyperstimulate the ovaries: Clomiphene citrate, Gonadotropins, GnRH agonists, GnRH antagonists, and recently aromatase inhibitors. Many methods have been described for the retrieval (pick-up) of oocytes IVF. Laparoscopic and ultrasound guided transvaginal retrieval. Preimplantation genetic diagnosis (PGD) is now the field for research in order to increase the rate of implantation. The embryo transfer (ET) process represents the culmination of the IVF cycles. Blastocyst transfer would provide a better synchrony between the uterine endometrium and the embryo. Cryopreservation allows the storage of supernumerary embryos while oocytes, ovarian tissues and testicular tissue are still under trial.

Key Words: In vitro fertilization - Controlled ovarian Hyperstimulation - Oocyte retival-Sperm retrival- endometrial receptivity- Embryo Transfer - Preimplantation Genetic Diagnosis-Cryopreservation.

ACKNOWLEDGEMENT

First and above all thanks to GOD, the most beneficial and merciful for helping me bring this work to light.

I would like to express my most sincere gratitude and grateful appreciation to Prof. Dr. Samia Hamed Khalil Seleha, Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University. It was a great honour to work under her supervision. Her great encouragement, help and patience will always be remembered.

My Deepest thanks and appreciation goes to Assistant Prof. Dr. Heba Ali ELSawah, Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, for her unforgettable help, advice, and fruitful assistance during the course of this research.

Many thanks to Dr. Ahmed Mohamed AbdElhak Lecturer of Obstetrics and Gynecology Faculty of Medicine, Cairo University, for his kind support and help. I am greatly indebted to his objective criticism throughout every step of this work.

DEDICATION

To the memory of

My father

And to my
lovely mother
and to my deer
husband Ahmed
for their
support and
helh
And to my
beloved son
fawzy

LIST OF FIGURES

Figure No.		Page No.
1.	Ultrasound picture of an ovary stimulated for in vitro fertilization.	5
2.	Exogenous Gonadotropin Stimulation after Down-Regulation with a Long-Acting GnRH Agonist-the "Long" Protocol	20
3.	Sequential Stimulation with a GnRH Agonist and Exogenous Gonadotropins—the "Short" or "Flare" Protocols	22
4.	Oral contraceptive (OC) Pretreatmmt In combination with a long protocol.	23
5.	Single or dual administration of the GnRH antagonist cetrorelix in COH around day 8: the French protocol	30
6.	Multiple-dose adminsteration of GnRH antagonist :Lubeck protocol	31
7.	Soft protocol. COH with CC and hMG/recombinant FSH with mid cyclic GnRH antagonist administration daily. (OPU), oocycte pick-up; (ET), embryo transfer.	33
8.	Oocytes at different stages of maturity in vitro.	49
9.	Diagrammatic representations of different ultrasound-guided oocyte recovery techniques.	51
10.	Retrieval of Oocytes.	55
11.	Scanning electron microscopy (SEM) of endometrial biopsy day LH + 6.	65
12.	High-quality day 5 blastocyst showing inner cell mass	78
13.	Polar body biopsy	89
14.	Blastocyst biopsy	93

LIST OF TABLES

Table No.		Page No.
1.	Triggering ovulation with GnRH agonists does not compromise embryo implantation rates.	27
2.	Summary of cycle characteristics when an aromatase inhibitor was used for ovarian stimulation in conjunction with FSH injection in comparison with FSH-only cycles.	39
3.	SART/ASRM guidelines for the number of embryos transferred	77

CONTENTS

		Page
•	INTRODUCTION	1
•	CONTROLLED OVARIAN HYPERSTIMULATION	4
	1.CLOMIPHEN CITRATRE	4
	2.GONADOTROPIN	10
	3. GONADOTROPIN RELEASING HORMONE AGONIST	17
	4. GONADOTROPIN RELEASING HORMONE ANTAGONIST	28
	5. AROMATASE INHIBITOR	36
•	LUTEAL PHASE SUPPORT	42
•	OVARIAN RESERVE	46
•	OOCYTE RETRIVAL	49
•	SPERM RETRIVAL	57
•	UTERINE RECEPTIVITY	60
•	EMBRYO TRANSFER.	72
•	PREIMPLANTATION GENETIC DIAGNOSIS	85
•	CRYOPRESERVATION TECHNIQUE	99
•	SUMMARY	108
•	REFERENCES	111
•	ARABIC SUMMARY	

LIST OF ABBREVIATIONS

•	ART	Assisted reproductive technologies
•	ACTH	Adrenocorticothyrotropin hormone

• ASRM American Society for Reproductive Medicine

BT Blastosyst TransferCC Clomiphene citrate

CCC Clomiphene citrate challenge test
 CGH Comparative genomic hypridization
 COH Controlled ovarian hyperstimulation

• DXM Dexamethasone

DHEAS Dehydroepianderostiendione sulphatedUPT Deoxynuclieotidyl transferase biotin

• E2 Estradiol

• ECM Extracellular matrix

• EGF Endometrial Growth Factor

• ET Embryo transfer

• FDA Food and Drug Administration

• FbM follitropin alfa

• FISH Flurorescence Insitu Hybridization

FSH Follicle-stimulating hormone
 GIFT Gamete intrafallopian transfer
 GnRH Gonadotropin releasing hormone

• GnRH a Gonadotropin releasing hormone agonisit

• GV Germinal vesicle

• HB-EGF Heparin-binding EGF-like growth factor

HCG Human chorionic gonadotropins HMG Human menopausal gonadotropin

• HP-FSH Highly purified Follicle-stimulating hormone

• ICSI Intracytoplasmic sperm injection

IUI Intrauterine Insemination
 IGF Insulin-like growth factor
 IGF-BPs IGF binding proteins

• IL Interleukin

IVF In vitro fertilization LH Luteinizing hormone

• LIF Leukemia inhibitory factor

• LPD Luteal phase defect

MESA Microsurgical epididymal sperm aspiration

M II Metaphase II

• M-FISH Multicolour Flurorescence Insitu Hybridization

• MUC-1 Mucin-1

NIVF Natural cycle IVFNS No significant

• NSADs Non Steroidal Anti-inflammatory Drugs

• OHSS Ovarian hyperstimulation syndrome

OC Oral contraceptive
OPU Oocyte Pick Up
OR Ovarian Reserve
P Progesterone

PCOS Polycystic ovarian syndromePCR Polymeraze Chain Reaction

PGD Preimplantation Genetic Diagnosis
 PGs Preimplantation Genetic Screening
 POST Peritoneal Oocyte and Sperm Transfer

• PR Pregnancy Rate

• RCT Randomized controlled Trial

• r-hFSH Recombinant human Follicle-stimulating hormone

r-hLH Recombinant human Luteinizing hormone
 SART Society for assisted reproductive technology

SBT Single Blastosyst TransferSEM Scanning electron microscopy

• SKYFISH Spectral Karyotyping Flurorescence Insitu Hybridization

TESE Testicular sperm extractionTET Tubal embryo transfer

• Th T-helper

• US Ultrasonography

• ZIFT Zygote intra-fallopian transfer

Assisted reproductive techniques (ART)

The first in vitro fertilization (IVF) pregnancy was ectopic and the first child, Louise Brown was conceived in a natural IVF cycle (*Steptoe and Edwards*, 1978)

Assisted reproductive technologies (ART) encompass all techniques involving direct manipulation of oocytes outside the body. The first and still most common form of ART is in vitro fertilization (IVF), but there are other related techniques within ART (*Speroff and Fritz*, 2005).

<u>IVF:</u> *In Vitro Fertilization*: extraction of oocytes, fertilization in the laboratory, transcervical transfer of embryos into the uterus.

GIFT: Gamete Intrafallopian Transfer: the placement of oocytes and sperm into the fallopian tube.

ZIFT: *Zygote Intrafallopian Transfer*: the placement of fertilized oocytes into the fallopian tube.

<u>TET:</u> *Tubal Embryo Transfer*: the placement of cleaving embryos into the fallopian tube.

<u>POST:</u> *Peritoneal Oocyte and Sperm Transfer*: the placement of oocytes and sperm into the pelvic cavity.

In addition, techniques of sperm retrieval and sperm injection are now part of the assisted reproductive technology

<u>ICSI:</u> Intracytoplasmic Sperm Injection (of a single spermatozoon).

TESE: Testicular Sperm Extraction.

MESA: Microsurgical Epididymal Sperm Aspiration.

Components:

A typical ART cycle has the following main components: (Yao and Schust, 2002):

- Downregulation using gonadotropin releasing hormone (GnRH) agonist.
- Controlled ovarian hyperstimulation (COH) using gonadotropins with follicular monitoring using transvaginal ultrasound and assessment of serum estradiol level.
- Oocyte maturation using hCG.
- Oocyte retrieval.
- Fertilization by IVF, ICSI or GIFT.
- In vitro embryo culture (except in GIFT).
- Luteal support or endometrial preparation using progesterone supplementation.
- Transfer of fresh embryos with possible cryopreservation of excess embryos.
- First trimester pregnancy monitoring.

Patient Selection for IVF:

The initial experience with in vitro fertilization involved women with tubal disease, but early in the 1980s, the treatment was extended to individuals with male factor infertility, unexplained infertility, endometriosis, and immunologic causes for infertility (*Sauer et al.*, 1955).

IVF is the treatment of choice for patients with severe distal tubal disease, proximal obstruction (especially after 6 months have elapsed following cannulation or balloon tuboplasty), and for patients who have failed to achieve pregnancy within 2 years after tubal surgery or when tubal obstruction persists after surgery. Large hydrosalpinges can reduce the success rate with IVF, and removal is recommended prior to treatment (Strandell et al., 1994).

Whereas IVF can overcome a number of the barriers to fertility, it suffers the same limitation as does in vivo fertilization when it comes to age. Beyond the simple effect of age on oocyte quality, there also is a negative influence on IVF success from decreased ovarian responsiveness (*speroff et al.*, 1999).

I. CLOMIPHENE CITRATE (CC): (Clomid)

CHEMICAL NATURE:

It is an orally active non steroidal agent chemically related to diethylstilbestrol. Chemical name is 2-[p-(2-chloro-1,2-diphenyl-vinyl) phenoxy] triethylamine dihydrogen citrate. Clomiphene is a racemic mixture of its two stereochemical isomers, originally described as the cis and trans-isomers (*Speroff et al.*,1999).

MECHANISM OF ACTION:

Being similar to estrogen, it binds to estrogen receptors (nuclear receptors) for long periods of time, for weeks rather than hours, depleting receptor concentrations interfering with receptor recycling (*Clark et al 1982*). It modifies hypothalamic activity by affecting the concentration of intracellular estrogen receptors. So the hypothalamic-pituitary axis will be blind to endogenous level of estrogen so GnRH secretion is activated (negative feedback is diminished),

leading to FSH and LH pulse frequency increases in women with normal cycles (but not amplitude). On the other hand, administration of CC in anovulatory women will cause an increase in gonadotropin pulse amplitude (*Speroff et al.*, 2005).

DOSE AND ADMINISTRATION:

Standard Therapy

CC is administered orally, typically starting on the third to day after the onset of spontaneous or progestin-induced menstruation ovulation rates, conception rates, and pregnancy outcome similar regardless whether treatment begins on cycle day 3, 4, or 5 (*Wu CH*, and Winkel ,1989).

Treatment typically begins with a single 50-mg daily for 5 consecutive days, increasing by 50-mg increments in subsequent cycles until ovulation is induced effective dose of CC ranges from 50 mg/day to 250 mg although doses in excess of 100 mg/day are not approved the Food and Drug Administration (FDA). Lower dose (e.g., 12.5 mg/day to 25 mg/day) deserve a trial in who