TREATED WASTEWATER IMPACT ON PRESSURIZED IRRIGATION SYSTEMS PERFORMANCE

By SALWA HASSAN ABDOU MOHAMMED

B. Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2004 M. Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2010

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for The Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences
(On Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

TREATED WASTEWATER IMPACT ON PRESSURIZED IRRIGATION SYSTEMS PERFORMANCE

By

SALWA HASSAN ABDOU MOHAMMED

B. Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2004 M. Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2010

This thesis for Ph.D. degree has been approved by:

Date of Examination: 26 / 4 / 2017

I	Gomaa Abd-Rabou Abdel-Rahman Bakeer
I	Abdel-Ghany Mohammed El-Gindy Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University
1	Khaled Faran Taher El-Bagoury Associate Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University
I	Mahmoud Mohammed Hegazi Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

TREATED WASTEWATER IMPACT ON PRESSURIZED IRRIGATION SYSTEMS PERFORMANCE

By

SALWA HASSAN ABDOU MOHAMMED

B. Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2004 M. Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2010

Under the supervision of:

Dr. Mahmoud Mohammed Hegazi

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Khaled Faran Taher El-Bagoury

Associate Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

Dr. Mahmoud Mohammed El-Bordiny

Prof. of Soil Science, Department of Soil, Faculty of Agriculture, Ain Shams University

ABSTRACT

Salwa Hassan Abdou Mohammed: Treated Wastewater Impact on Pressurized Irrigation Systems Performance. Unpublished Ph.D. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2017.

The aim of these study is to investigate the effect of using treated wastewater on pressurized irrigation system, soil and cultivated plant. All field experiments were carried out in the experimental farms at Al-Gabal Al-Asfar, El-Al-Khankah, Al-Qalyubia Governorateat at $30^{\circ}12 \,\Box\, 07.9 \,\mathrm{N}$, $31^{\circ}24 \,\Box\, 39.7 \,\mathrm{E}$. (20 x 45) m² plot area was selected for carrying out the experiments. The main plot was divided to two sub plots (20 x 25) m² for drip irrigation system, (20 x 20) m² for mini sprinkler irrigation system.

Results indicated that the use of drip irrigation system was the best, when the emission uniformity was (80.81 - 68.75 - 83.17 - 89.39)% for emitters (21/h self, 21/h non self, 81/h self and 81/h non self) respectively. Accumulative clogging ratio was range of (2.87 – 16.64), (3.21 - 37.98), (5.04 - 11.3) and (1.3 - 19.2) % respectively. Percentage of roughness at main lines by using treated wastewater was higher than fresh water, which was (24.37) %, and sediments by using fresh water was higher than treated wastewater, which was (47.31) %. At sub main lines roughness by using treated wastewater was higher than fresh water, which was (10, 43.75) % for drip and sprinkler systems respectively, and sediments by using fresh water was higher than treated wastewater, which was (48.78, 6.25) % for drip and sprinkler systems respectively. At manifold lines roughness by using treated wastewater was higher than fresh water, which was (55.6, 98.8) % for drip and sprinkler systems respectively, and sediments by using fresh water was higher than treated wastewater, which was (60, 1.18) %.

Keywords: Well water – Treated wastewater – Performance - heavy elements – jojoba – pressurized irrigation – Surface roughness.

ACKNOWLEDGMENT

First of all, my deepest thanks and praise are due and fully extended-as always to **Allah**, who has created us and bestowed upon us a lot of blessings which cannot enumerate and thank enough.

The author wishes to express his deepest gratitude to **Prof. Dr. Mahmoud Mohammed Hegazi**, Prof. of Agric. Engineering, Faculty of Agric., Ain Shams University. for suggesting the problem of study and for his kindly supervision throughout this work. The author is grateful for his valuable discussions, suggestions and helpful criticism, which helped him to finalize this work.

The author wishes to express his sincere gratitude and appreciation to **Dr. Khaled Faran Taher Elbagoury** Associate Professor of Agricultural Engineering, Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University for his kind supervision, problem suggestion, continuous encouragement and valuable advices throughout this work.

The author also wishes to express his gratitude and appreciation to **Prof. Dr. Mahmoud Mohammed Elbourdiny**, Professor of Soil Science and Head of Soil Department, Faculty of Agriculture, Ain Shams University, for supervision, kind help and for reviewing the manuscript.

I would like to sincerely thank Department of Agriculture Engineering, Faculty of Agric., Ain Shams University. And last, but not least, thanks to my mother for her kind help for me and my husband **Dr.**Muhammad Ahmad Mahmoud Mayhoub for his support and his encouragement to complete this work, special thanks to **Dr.** Ashrf Abdel Galil Anwer for his kind help. also for every one helped me specially all of staff member of the Department of Agriculture Engineering.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2-1 Water quality problems	3
2-2 Water quality for irrigation	4
2.3 Instructions for using low quality water in irrigation	5
2-3-1 Treated wastewater and irrigation methods	6
2-3-2 Impact of use treated wastewater on heavy metals	9
2-3-3 Impact of use treated wastewater on salinity	12
2-4 Irrigation with saline water	14
2-4-1 Saline water and irrigation methods	16
2-4-2 Saline water and crops	19
2-5 Factors affecting performance	22
2-6 Flow characteristics and uniformity	23
2-6-1 Flow characteristics	23
2-6-2 Emission uniformity (EU)	24
2-6-2-1 Meaning of emission uniformity	25
2-6-2-2 Manufacturing coefficient variability	25
3- MATERIALS AND METHODS	27
3-1 Experimental site	27
3-2 The materials	27
3-2-1 Soil analysis	27
3-2-2 Plant analysis	28
3-2-3 Irrigation water analysis	29
3-2-4 Irrigation network	31

3-3 The methods and measurements
3-3-1 Measurements for drip irrigation system
3-3-1-1 Emission uniformity (EU) calculation
3-3-1-2 Manufacturing coefficient (CV) calculation
3-3-1-3 Measuring of wetting front
3-3-1-4 Sensitive for clogging
3-3-2 Measurements of mini sprinkler irrigation system
3-3-2-1 Coefficient of uniformity (CU) calculation
3-3-2-2 Precipitation rate (Rs), mm/h calculation
3-3-2-3 Radius wettability, m
3-3-2-4 Number of sprinkle rotation, rpm
3-3-2-5 Measuring of wetting front
3-3-3 Measurement of surface roughness
3-3-4 Measurements for soil
3-3-5 Measurements for Cultivated plants
3-4 Experimental treatments
3-5 Irrigation requirements
4- RESULTS AND DISCUSSION
4-1 Calibration for emitters and sprinklers
4-1-1 Calibration emitters
4-1-2 Calibration sprinklers
4-2 Relationship between flow rate and time
4-2-1 For drip irrigation system
4-2-2 For mini sprinkler irrigation system
4-2-3 Performance rate for mini sprinkler irrigation system
4-3 Emission uniformity (EU)
4-3-1 Emission uniformity (EU) for drip irrigation
4-3-2 Coefficient of uniformity (CU) for mini sprinkler irrigation
system

8- ARABIC SUMMARY	
7- APPENDIX	73
6- REFERENCES	67
5- SUMMARY AND CONCLUSION	65
4-8-2 Plant under mini sprinkler irrigation	62
4-8-1 Plant under drip irrigation	60
4-8 Plant	60
4-7-2 Under mini sprinkler irrigation	58
4-7-1 Under drip irrigation	57
4-7 Soil	57
4-6-3 Manifold irrigation lines	55
4-6-2 Sub main irrigation lines	54
4-6-1 Main irrigation lines	53
4-6 Surface roughness	53
4-5-2 Wetting pattern front for mini sprinkler	51
4-5-1 Wetting pattern front for drip irrigation	50
4-5 Wetting pattern front	50
4-4 Clogging ratio	48

LIST OF TABLES

	Page
1- Instructions for interperpration of water quality for irrigation -	6
2- Recommended ranges of design emission uniformity (EU),	
ASAE, (1998)	25
3- Recommended classification of manufacturer's coefficient of	
variation (CV), ASAE, (1998)	26
4- Some physical properties for soil	27
5- Some chemical characteristics for soil	28
6- Plant content of elements	29
7- Some chemical characteristics for water	30
8- Mechanical analysis of total suspended solids (TSS)	30
9- Some biological characteristics for water	31
10- Specification for water pump	31
11- Specification for Soil moisture meter	33
12- Specification for experimental design plots	39
13- Performance rate for sprinkler nozzles by using fresh water	46
14- Performance rate for sprinkler nozzles by using treated	
wastewater	46
(A-1): Emission uniformity (EU) and Manufacturing coefficient	
(CV) after one week under trickle irrigation by using treated	
wastewater	73
(A-2): Emission uniformity (EU) and Manufacturing coefficient	
(CV) after six weeks under trickle irrigation by using	
treated wastewater	73
(A-3): Emission uniformity (EU) and Manufacturing coefficient	
(CV) after one week under trickle irrigation by using fresh	
water	74
(A-4): Emission uniformity (EU) and Manufacturing coefficient	
(CV) after six weeks under trickle irrigation by using fresh	
water	74

(A-5): flow rate after one week under sprinkler irrigation	75
(A-6): flow rate after six weeks under sprinkler irrigation	75
(A-7): accumulative clogging ratio by using treated wastewater	75
(A-8): accumulative clogging ratio by using fresh water	75
(A-9): Physical measurements on plants	76
(A-10): Physical measurements on seeds for plants	76

LIST OF FIGURES

	Page
1- Jojoba (Simmondisa Chinensis)	29
2- Section of emitter	31
3- Electronic microscope	32
4- Soil moisture meter	32
5- The prototype of experimental design	38
6- The prototype of experimental treatments	39
7- Relationship between pressure and flow rate at different emitter	40
8- Manufacturing coefficient "CV" for all emitters	41
9- Relationship between pressure and flow rate at different	
sprinkler nozzles	42
10- Emission uniformity for two sprinkler nozzles	42
11- Relationship between flow rate and time by using fresh water	43
12- Relationship between flow rate and time by using treated wastewater	44
13- Relationship between flow rate and time by using fresh water	
and treated wastewater	44
14- Emission uniformity by using fresh water	47
15- Emission uniformity by using treated wastewater	47
16- Coefficient of uniformity by using fresh water and treated	
wastewater	48
17- Accumulative clogging ratio by using fresh water	49
18- Accumulative clogging ratio by using treated wastewater	49
19- Wetting pattern front before irrigation by using fresh water	50
20- Wetting pattern front after irrigation by using fresh water	50
21-Wetting pattern front before irrigation by using treated	
wastewater	51
22-Wetting pattern front after irrigation by using treated	50

wastewater
23- Wetting pattern front before irrigation by using fresh water
24- Wetting pattern front after irrigation by using fresh water
25- Wetting pattern front before irrigation by using treated
wastewater
26- Wetting pattern front after irrigation by using treated
wastewater
27- Surface roughness for main lines by using fresh water and
treated wastewater
28- Surface roughness for sub main lines by using fresh water and
treated wastewater for drip irrigation system
29- Surface roughness for sub main lines by using fresh water and
treated wastewater for sprinkler irrigation system
30- Surface roughness for manifold by using fresh water and
treated wastewater for drip irrigation system
31- Surface roughness for manifold by using fresh water and
treated wastewater for sprinkler irrigation system
32- The proportion of cations and anions by using fresh water and
treated wastewater
33- The proportion of minor and heavy elements by using fresh
water and treated wastewater
34- The proportion of cations and anions by using fresh water and
treated wastewater
35- The proportion of minor and heavy elements by using fresh
water and treated wastewater
36- The proportion of major elements for seeds by using fresh water and treated wastewater
37- The proportion of major elements for leaves by using fresh
water and treated wastewater

VIII

38- The proportion of minor and heavy elements for seeds by	
using fresh water and treated wastewater	61
39- The proportion of minor and heavy elements for leaves by	
using fresh water and treated wastewater	62 63
41- The proportion of major elements for leaves by using fresh	
water and treated wastewater	63
42- The proportion of minor and heavy elements for seeds by	
using fresh water and treated wastewater	64
43- The proportion of minor and heavy elements for leaves by	
using fresh water and treated wastewater	64

INTRODUCTION

Water is considered the backbone of life and development for all humans on this globe as well as for all other kinds of animals and plants. The problems of increasing water shortages and scarcity, and the continuous drought phenomena currently faced in many arid and semi-arid regions, increase the magnitude of the problem. Therefore, other ways proposed or already used for developing new water sources such as seawater desalinization, brackish water, and the use of treated wastewater from wastewater treatment facilities (MWI 1998a; 1998b).

Treated domestic sewage is being reused for irrigation with or without mixing with fresh water. The increasing demands for domestic water will increase the total amount of sewage available for reuse. It is estimated that the total quantity of reused water is estimated to be 13 BCM in 2013. Reuse of non-conventional water sources such as agricultural drainage water and treated sewage water cannot be added to Egypt's fresh water resources. In fact, using these sources is a recycling process of the previously used Nile fresh water in such a way that improves the overall efficiency of the water distribution system. The amount of water that returns to drains from irrigated lands is relatively high (about 25 to 30%). The reuse practices increase the overall efficiency of the system as comparable to the efficiency of modern irrigation systems. (Ministry of Water Resources and Irrigation, 2014).

The use of low-quality water agriculture requires salts laundering and drain excess water. However, there are some micro salts and chemicals that reduce the quality of wastewater in irrigation systems. The quality of the water is a source of pollution of water bodies located downstream of the sewage outlet. Also, the deep cold lead to groundwater contamination. Therefore, it requires irrigation with salt water a comprehensive analysis to ascertain the validity of the use of water. Taking into account the groundwater and surface water resources flowing downstream in the river bed. Thus, the continuous and permanent use of

INTRODUCTION

salt water in irrigation requires control of the salinity of the soil, and a decrease in the amount of wastewater, and disposal of the return of irrigation water to reduce the side effects on the quality of water resources relics (Julian Martinez, 1999).

According to United Nation's Common Country Assessment (UN CCA,2001) the present and predicted water resources by BCM in 2001, 2017 resp. are 4.5, 8.4 from agricultural drainage water, 0.7, 2.5 from treated domestic waste water and 6.7, 6.7 from treated industrial waste water.

The aim of this study:

- 1- Reuse of treated wastewater at different concentrations of elements.
- 2- Study the effect of water treatment on the network distributers (sprinklers drippers) such as (pressure discharge radius of wetting tracks radius clogging ratios wetting pattern front for different treatments for irrigation systems etc.).
- 3- Study on the environmental impacts associated with the soil and plants by using treated wastewater.