

Investigation of novel antimicrobial agents extracted from plant materials for the treatment of wounds infection

Thesis submitted in partial fulfillment of requirements for the degree of master In Microbiology Submitted by

Lamia Ibrahim Moursy Ismail

(B.Sc., in Microbiology & Chemistry, 2007)

Faculty of Women

Ain shams University

Under the supervision of

Dr. Nagwa Ahmed Abd-Allah

Assistant Professor of Microbiology,

Microbiology Department, Faculty of science,

Ain shams University.

Dr. Raafat Zaher Abd-Elrahman

MD, Microbiology & Immunology Military Medical Academy.

Dr. Ariga Kamal Abd-El monem Amer

Lecturer of Microbiology,
Faculty of Medicine, Cairo University.

Approval sheet

Investigation of novel antimicrobial agents extracted from plant materials for the treatment of wounds infection

By

Lamia Ibrahim Moursy Ismail

(B.Sc., in Microbiology & Chemistry, 2007, Faculty of Women, Ain shams University)

<u>Supervisors</u> <u>Approved</u>

Dr. Nagwa Ahmed Abd-Allah

Assistant Professor of Microbiology,

Microbiology Department, Faculty of science,

Ain shams University.

Dr. Raafat Zaher Abd-Elrahman

MD, Microbiology & Immunology

Military Medical Academy.

Dr. Ariga Kamal Abd-El monem Amer

Lecturer of Microbiology,

Faculty of Medicine, Cairo University.

Examination committee

Prof. Dr. Yahya Ahmed Al-zawahry

Emeritus Professor of Microbiology, Faculty of Science,

Zagazig University.

Prof. Dr. Zeinab Mohamed Hassan Kheir allah

Emeritus Professor of Microbiology, Faculty of Women,

Ain shams University

Dr. Nagwa Ahmed Abd-Allah

Assistant Professor of Microbiology, Faculty of science,

Ain shams University.

Date of examination: / / Approval date: / /

University Counicel approved:

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to Allah, the most beneficent and merciful

I would like to express my deep gratitude and thanks to my dear supervisor

Dr., Nagwa Ahmed Abd-Allah,

Asssistant Prof. of Microbiology, Department of Microbiology,

Ain shams university, for her help, encouragement, continuous advice and her expert supervision to bring this thesis to more than satisfactory finish. I have learned from you a lot and I will still learning from you.

I gratefully and sincerely thank my dear supervisor

Dr.Raafat ZaherAbd –Elrahman,

MD, Microbiology & Immunology, Military Medical Academyfor his help, continuous support and the best advisor.

I gratefully and sincerely thank my dear supervisor **Dr. Ariga kamal Abd-El monem Amer**, Lecturer of Microbiology, Faculty of Medicine, Cairo University.

Deep thanks TO MY **MOTHER, FATHER,** TO MY **BROTHERS**, and FAMILY also to all members of Microbiology department of National Cancer Institute especially Thanks for

Mr/Ashraf, and to all members of Laboratories of Armed Force for Medical search and Blood banking

, to all members of Microbiology department AinShams university and every one helped me.

For his support, encouragement, valuable advices and constant help

May god bless him

This dissertation has not been previously submitted for any degree at this or at any other university

Lamia Ibrahim Moursy Ismail

ABSTRACT

This study was performed in the National cancer institute between 19/11/2008 to 30/5/2010 where 103 surgeries were analyzed. Twenty two species of bacterial cultures belonging to 8 genera were obtained from infected wound cultures. The most common was *E.coli* which represent 17.5% this was followed by A. baumannii 14.5%, come next in rank both of Achromobacter sp. and P. aeruginosa each represent 13.6% and 12.6% respectively. Data also showed the occurrence of **S.** aureus, **E.** aerogenes and K. pneumoniae representing 11.6%, 4.8% and 5.8% respectively. The lowest occurrence was recorded by Morganella morganii that represented 2.9%. While the other isolated species were of low occurrence frequency. Measurement of C-reactive protein (CRP) and interleukin-6 (IL-6) in the blood of tested patients was high indicting that all patients were suffering from inflammation. The 8 most potent isolates were found to be resistant to the most 41 tested antibiotics, while they showed variable sensitivity to the tested plant extracts. Methanol extract of cinnamon, guava, sumac and radish and ether extract of cloves were found to be the most effective plant extracts against the tested pathogenic bacterial isolates. Analysis of the five selected plant extracts revealed that they contain tannins, sterols and terpenes, resins, flavonoids (combined and free), saponins,

<u>ABSTRACT</u>

glycosides, alkaloids and phenolic compounds. Our GC/MS analysis of cinnamon oil identified twenty-six phytochemicals as constituents; of these cinnamaldehyde was the major compound (57.6%) followed by Cinnamyl acetate (9.22%), Eugenol (5.070%), Cinnamaldehyde dimethyl Acetal (3.5%) and Vitamin E (2.3%).

Contents

CONTENTS

Subject	Page
List of tables	IV
List of figures	V
Abbreviations	VI
Introduction	1
Aim of work	3
Chapter one Review of Literature	4
1. 1. Wounds infection	4
1.1.1 Factors affecting wounds infection	5
1.1.2 Factors Predisposing to Microbial Proliferation	7
1.2. C-reactive protein (CRP) and interleukin-6 (IL-6)	12
1.3. Microbial wounds infection	14
1.4. Effect of plant extracts	20

Contents

Chapter two	Page
Material & Methods	1 age
2.1 Materials	29
2.1.1 Plants used	29
2.1.2 Antibiotics used	31
2.2 Methods	33
2.2.1. Collection and preparation of Samples	32
2.2.2. Identification of bacteria	32
2.2.3. Morphological and Biochemical characterization of	
bacterial isolates	33
2.2.4. Measurement of C-reactive protein and interleukin-6	
methods	33
2.2.5. Bacterial sensitivity to antibiotics	33
2.2.6. Preparation of plant extract	34
2.2.7. Screening of Antimicrobial activity of Antibiotics and	
Plant extracts	35
2.2.8. Determining the major active components of the potent	
extracts	35
2.2.9. Gas chromatography mass spectrometry (GC/MS)	
Methodology	40

Contents

Chapter three Results	
3.1. Isolation and Characterization of Pathogenic Bacteria	
3.2. Measurement of C - reactive protein (CRP) and interleukin-6 (IL-6)	
3.3. Bacterial sensitivity to different antibiotic	
3.4. Antibacterial Activity of Aqueous Plant Extract and some plant oil on tested Bacterial species	59
3.5. Effect of different solvent on the antibacterial activity of selected plants against bacterial species	
3.6. Antibacterial effect of plant extracts combinations on the selected Bacterial species	
3.7. Determination of the major components of the potent Plant extracts	
3.8. Gas chromatography mass spectrometry (GC/MS) for the selected plant (cinnamon)	
Discussion	83
English summary	97
References	101
Arabic summary	

LIST OF TABLES

No.	Table title	Page
1	Local medicinal plants used	29
2	commercial plant oils	31
	Morphological and biochemical characterization of bacterial isolates	
3		
4		46
	Isolation of Bacteria from Patients Infected Wound	47
		48
		49
		50
		51
5	Frequency and bacterial isolates recovered from patient's wound	52
6	Shows the average measurement of C -reactive protein (CRP) and interleukin-6 (IL-6)	54
		56
7	Bacterial isolates sensitivity against different antibiotics	
	Antibacterial activity of some plant extracts and plant oils on the Selected Bacterial species	
8		
9	Effect of different solvents of the antibacterial activity of	74
9	selected plants against bacterial species	75
10	Antibacterial effect of plant extracts combinations on the selected Bacterial species	78
11	Determination of the major components of the potent Plant extracts	80
12	Major chemical compounds of cinnamon oil (GC-MS	81
12	analysis)	82

LIST OF FIGURES

No.	Subject				
1	The percentage male and female frequency	51			
2	The percentage of different ages				
3	The percentage of different microorganism				
4	The frequency of bacterial species sensitivity against different antibiotics				
5	Shows the zone of inhibition of different plant extracts (Group A, Group B, Group C, Group F, Group G)				
			6	Shows effect of different solvent extracts for Guava, Sumac, Cinnamon, Clove and	75
				Radish on different selected microorganisms	76
			7	Shows the relation between different plant combination methanol extracts on the selected microorganisms	79

ABBREVIATIONS

WBC	white blood cell
C3a	activated complement product
IL-6	interleukin 6
CRP	C-reactive protein
i.e.	that is
ESBL	Extended-Spectrum Beta-Lactamase
SSI	surgical site infections
CFU	colony-forming units
SIRS	systemic inflammatory response
	syndrome
CoNS	Coagulase-negative staphylococci
NINSS	Nosocomial infection national
	surveillance service
NICU	neonatal intensive care unit
ICUs	intensive care units
ELISA	enzyme linked Immune sorbent assay
v/v	volume/volume
Da	Dalton (the Atomic mass unit)
Tibia	shinbone or shankbone
AML	Acute myeloid leukemia
NHL	non-Hodgkin lymphomas
T-ALL	T-cell acute lymphoblastic leukemia
AIDS	Acquired immunodeficiency
	syndrome
HIV	Human immunodeficiency virus

INTRODUCTION

Skin and soft-tissue infections are among the most common may lead serious local infections. and to and complications. These infections can be potentially life-threatening and may progress rapidly; therefore, their early recognition and proper medical and surgical management is important (Brook, 1995). The pathogenesis of infections usually involves direct inoculation of pathogens, but infection occasionally spreads to the skin contiguously from deeper foci or haematogenously from distant sites (Francque et al., 2001; Lodha et al., 2003; Mahler et al., 2003).

Severity ranges from minor superficial lesions to invasive, fulminant and even lethal infections. The most common pathogens are aerobic Gram positive cocci, but complicated infections frequently involve Gram-negative bacilli and anaerobic bacteria. Initial antibiotic therapy is usually empirical, and later modified by the results of stains and cultures of wound specimens. Broadspectrum coverage is frequently needed for complicated infections (Mark et al., 2004).

The systemic host response to microbial infection involves clinical signs and symptoms of infection, including fever and elevated white blood cell (WBC) counts. In addition, inflammatory

Introduction

mediators are released, including activated complement product C3a, interleukin 6 (IL-6) (**Johan** *et al.*, **2001**).

The emergence of antibiotic-resistant organisms is a major public health concern, particularly in hospitals and other health care settings (Schwartz et al., 1997; Spellberg et al., 2008). Medicinal plants are natural resources, yielding valuable products which are often used in the treatment of various ailments. According to the world health organization, more than 80% of the world populations still rely on herbal medicines as their primary source of health care. Because of the concern about the side effects of conventional medicine, the use of natural products as an alternate to conventional treatment in healing and treatment of various diseases has been on the rise in the last few decades (Saeed and Tariq, 2007).

Consequently, there is concern that in the not-too-distant future, we may be faced with a growing number of potentially untreatable infections (**Michael** *et al.*, **2009**).

Plant materials remain an important resource for combating illnesses, including infectious diseases, and many of the plants have been investigated for novel drugs or templates for the development of new therapeutic agents (Konig, 1992).

AIM OF WORK

Our Study Aimed To:

- Microbial resistance to antibiotics is a deep problem in medicinal treatment. So search for new substances overcome this resistance is necessary.
- Our work is to search for new substances extracted from plant materials and investigate its antimicrobial activity against bacterial infection of surgery wounds that is resistant to antibiotics.
- In addition, determination C-reactive protein and interleukin-6 in patient blood serum.