

Ain Shams University Women's College For Arts, Science, Education Biochemistry and Nutrition Department

"Evaluation of Glycemic Load and Lipimic Response of some Traditional and Fast Foods Consumed by Egyptians using Rats"

Thesis Submitted By

Doaa Said Mohamed Fouad

(B.Sc., in Biochemistry and Nutrition, 2002)

In partial Fulfillment for

Master Degree in Science (M.Sc)

Biochemistry and Nutrition

Supervisors

Prof. Dr. Tahani El-Sayed Kholief

Professor of Biochemistry

Department of Biochemistry and Nutrition

Women's College – Ain Shams University

Prof. Dr. Fawzi Amin El-Shobaki

Professor of Nutritional Biochemistry

Department of Food Science and Nutrition

National Research Center

Prof. Dr. Ibrahim Mohamed Hamed

Professor of Nutritional Biochemistry

Department of Food Science and Nutrition

National Research Center

2013

Acknowledgement

I would like to express my thanks and gratitude to **Prof. Dr. Tahani El-Sayed Kholief**, Professor of Biochemistry, Biochemistry and nutrition department, Women's College, Ain Shams University. For her supervision, encouragement and advice.

Grateful acknowledgement is due to **Prof. Dr. Fawzi Amin El-Shobaki**, Professor of Nutritional Biochemistry, Food Science and Nutrition Department, National Research Center, for suggesting the work, supervision and care during the preparation of the thesis.

I wish to express my deepest thanks to **Prof. Dr. Ibrahim Mohamed Hamed**, Professor of Nutritional Biochemistry, Food Science and Nutrition
Department, National Research Center, for his supervision and guidance during the
experimental work of this study.

Thanks and gratitude to my family for their continuous encouragement.

I wish also to thank everyone helped me to make this work.

ABSTRACT

The glycemic index and lipemic response are two parameters nowadays used to measure the extent of glucose tolerance and lipemic impact of different meals consumed by the population. In this study, glucose tolerance and lipemic response of some popular meals usually and frequently consumed by the public were measured. These meals were koshary, tamia, stewed bean, besara, koskosi, shawerma, hawawshi, hamburger, kentaki fried chicken and pizza. The main ingredients composing the plant based meals are rice, lentils and chickpea in case of koshary and mainly beans in the other meals namely Tamia or Besara. The main ingredients used for the animal based meals are either meat or chicken. Among the plant based meals the highest values for GI and GL were obtained for koshary and koskosi. The values obtained were72.8 and 16.5 for koshary and 74.9 and 29.8 for koskosi The other meals namely, tamia, broad bean or besara have glycemic indexes that may be classified as moderate. It is worth mentioning that combination of tamia with bread or with bread and salad caused a slight increase in the values reported for the glycemic index and glycemic load.

The values reported for the glycemic index and glycemic load of the animal based meals are remarkably higher than the corresponding ones of the plant based meals except for koshary and koskosi .The highest value was reported for pizza (70.3) and the lowest for hawawshi (55.45). In this study, the aim was to modify some meals that are most popular in the local market and also those which have the highest either glycemic index or lipemic response. Trials were made to modify koshary and tamia from the plant based group, pizza and hawawshi among the animal based ones. The modification was to improve the glycemic index and lipemic response of these meals to avoid complications that can occur to consumers.

Koshary meal was modified by reducing the amount of rice and increasing the amount of lentils. Rice was reduced from 136 to 111g while lentils were increased from 42 to 102 g. Chickpea was also increased from 11 to 43g.

Concerning tamia meal, the amount of bread was decreased from 231 to 198 g salad was increased from 175 to 308g, the amount of tamia itself was reduced from 527 to 461g. In addition tamia was prepared from bean and chickpea in the ratio of 1:2 As a result of these modifications have remarkable changes occurred in the values obtained after measurement of the glycemic index and glycemic load of the modified meals. GI of koshary changed from 72.8 to 22.96. The glycemic load from 16.5 to 5.4. In case of tamia the GI changed from 35.3 to 18.5 and GL from 7.7 to 2.4. Animal based meals were also modified. In case of hawawshi, soybean was added (112g/kg) on the expense of meat, besides, broccoli was added (56g/kg) to the meal. This modification caused a slight increase in protein content of hawawshi from 28.2 to30.7g% and a drop in fat content from 25.2 to18.2g% and there was a moderate increase in carbohydrate content. In case of pizza, mackerel fish was added (107g/kg) and souses was removed from the meal. As a result of this modification the protein content of pizza dropped from 32.6g% to 18.1g%, (table 12). The fat content also dropped from 17.1 to 2.8g%, while the carbohydrate increased from 41.1 to 70.2g%. Although the increased amount of carbohydrates in the modified meal is against the concept to decrease the glycemic index and load of either hawashi or pizza meal, yet the change of the ingredients agree quite well with health aspects. In spite of the relative increase of the carbohydrate content of the modified meals, yet the determined glycemic index and the calculated glycemic load of both meals were markedly decreased relative to the case before modification. The GI of pizza dropped from 70.30 to 25.01 and that of hawawshi from 56.13 to 32.45; The GL changed from 15.68 to 6.20 in case of hawawshi and from 11.64 to 8.26 in case of pizza. The animal experiment was done to assess the effect of modification of the 2 meals namely koshary and pizza on glucose level and lipid pattern of experimental animals. The animals were rendered diabetic by injection of alloxan. The choise of alloxan diabetic rats was based upon the fact that the main target of meal modification is to minimize the rise of blood sugar concentration following consumption of the meal. The blood sugar of diabetic rats before feeding, measured 2 hours after meal was significantly higher (157.89±5.75 mg/100 ml) than that of control rats 78.24±1.59). Rats fed on koshary meal showed relatively high values similar to that of control diabetic rats (173.43±6.77 for koshary before modification and 182.82±6.65 after modification). When blood sugar is measuredfeeding, significantly lower values were obtained (148.43±5.18 for koshary before modification and 143.5±3.1 after modification). This shows that in spite of the effective action of modified koshary meal on normal animals yet this effect on diabetic ones is not appreciable. However, after feeding the effect started to be observable. More or less similar findings were reported in case of pizza, the effect of modification was clear only after feeding.

It was concluded that consuming meals with low GI by diabetic persons can help to improve the condition and participate in reducing blood sugar level. It is not only the quantity of sugar but the nature of this sugar decided by the value of the GI.

The lipid profile of rats fed on the modified meals either koshary or pizza showed considerable improvement. Plasma total lipid, triacylglycerols, total cholesterol and LDL-chlesterol were markedly reduced. In the same time, there was an improvement in the value of HDL- cholesterol as a result of consumption of the modified meals. Thus, it can be stated that, the modified meals succeeded to minimize hyperglycemia following consumption of the meal and in turn decreasing the counter regulatory hormone action thus lead to partial correction of hyperlipidemia.

The conclusion is that, this study succeeded to give values perhaps for the first time to the glycemic index, load in and the lipemic response to a number of popular meals usually and oftenly consumed by Egyptians. The glycemic index was used to modify some of these meals in a trial to reduce the value of their glycemic index and lipemic response. This was to minimize their health hazards and make them safe to the consumers. The modification was effective proved by the feeding experiment which showed that animals fed on the modified meals have better blood glucose tolerance and lipid profile.

List of Contents

	Page
Abstract	
list of Tables	
list of Figures	
Introduction	1
Aim of the Work	5
Review of Literature	6
I. Glycemic Index	6
1- Area under the curve	7
2- Methodological Issues Regarding Measurement of GI	9
2.1 Amount and Availability of Carbohydrate Provided	9
2.2 Mode and Timing of Blood Sampling	10
3- Factors Affecting the Reproducibility and Applicability of GI	12
3.1 Variability in the Food	12
3.2 The effect of Variety and origin on GI values	16
3.3 Variability in the measurement	18
3.4 Within Subject Variation	19
3.5 Time of Day	20
3.6 Addition of other macronutrients	21
4- Physiological significance of Glycemic Index	25
4.1 The glycemic Index and weight loss	25
4.2 The glycemic Index and Diabetes	27
4.3 The glycemic Index and Heart Disease	29
4.4 Mechanisms of Action	32
5- Additional limitations of the GI	34
II. Postprandial Lipimia – Definition and Methods of Quantification	40
1- Triacylglycerols – Rich Lipoprotein Metabolism	42
2- Factors Influencing Postprandial lipimia	48

2.1 Fasting Triacylglycerols and HDL-C	48
2.2 Abdominal obesity	49
2.3 Insulin Resistance and type II diabetes	52
2.4 Sex Differences	54
2.5 Dietary variables	55
3- Fasting lipids, lipoproteins and CVD	57
3.1 Postprandial lipimia and CVD	60
III. Fast Food	61
1. Background of fast food	62
2- Factors Associated with fast food consumption	63
2.1 Age	63
2.2 Behavioral factors	64
2.3 Environmental Factors	66
IV. Dietary Modification	67
1- Effect of dietary modification on diabetes	68
1.1 Current WHO and ADA Recommendations	69
2- Hypertension	70
V- Food Items used for Modification	71
1- Chickpea	71
1.1 Uses of Chickpeas	71
1.2 Nutritional Values of Chickpeas	74
2- Broccoli	75
2.1 Nutritional Values of broccoli	76
3- Soybean	78
3.1 Nutritional Values of Soybeans	82
3.2 Health Benefits	83
3.2.1Cancer	83
3.2.2Brain	83
3.2.3 Soybean and Heart diseases	84

3.2.4 Soybean and phytic acid	86
4- Carrot	87
4.1 Methods of consumption and uses	88
4.2 Nutritional Values of carrot	90
4.3 Health Benefits	91
5- Mackerel Fish	92
6- Onion	93
6.1 Onion types and products	94
6.2 Nutritional Values of row Onion	96
6.3 Medicinal properties and health effects of Onions	97
7- Garlic	
7.1 Origin and major types	
7.2 Medicinal use and health benefits	
Materials and Methods	
1- Materials	99
1.1 Experimental animals	99
1.2 Meals	99
1.3 Chemicals and kits	99
2- Methods	99
2.1 Chemical methods	99
2.1.1 Determination of moisture content	100
2.1.2 Determination of Ash content	100
2.1.3 Determination of crude protein	100
2.1.4 Determination of crude fiber	101
2.1.5 Determination of carbohydrates	102
2.2 Experimental diet	102
2.3 Animal experiment	105
2.3.1 Determination of glycemic Index	105
2.3.2 Glycemic load	106

2.3.3 Lipimic response	107
2.3.4 Modification of Meals	107
2.3.5 Koshary	107
2.3.6 Hawawshi	108
2.3.7 Tamia	108
2.3.8 Pizza	109
2.4 Evaluation of modified foods	110
2.5 Induction of Alloxan Diabetes	110
2.6 Experimental work	111
2.7 Biological studies	112
2.7.1 Food intake and body weight	112
2.8 Biochemical analysis	112
2.8.1 Determination of serum glucose	112
2.8.2 Determination of serum Triacylglcerols	113
2.8.3 Determination of serum total cholesterol	115
2.8.4 Determination of HDL – Cholesterol	116
2.8.5 Determination of LDL – Cholesterol	118
2.8.6 Determination of Total – Lipid	120
2.9 Statistical analysis	121
Results	
1- Composition of Meals	122
2- Composition of modified meals	125
3- Nutrient composition	127
4- Nutrient composition of portion size of meals	129
5- Glucose tolerance of meals	131
6- Glycemic index and glycemic load	143
7- Triacylglycerols tolerance of meals	145
8-The effect of dietary modification on nutrient composition of the meals	157

9- Glucose Tolerance of modified meals	161
10- Glycemic Index and glycemic load	167
11- Feeding Animal Experiment	172
12- Glucose tolerance of rats fed on the meals before and after Modification	174
13- Lipid profile of Rats fed on the studied Meals	177
Discussion	181
Summary	199
Conclusion	207
References	208
Arabic Summary	266

List of Tables

Table No	Title	Page
1	Glycemic Index categories	6
2	Glycemic Index of selected "regular" and fiber-rich versions of food.	24
3	A comparison of the GI and GLs of various foods	37
4	Nutritional values of chickpeas	74
5	Nutritional values of broccoli	76
6	Nutritional Value of mature, row soybean (per100g)	81
7	Nutritional value of raw carrot (per 100g)	88
8	Nutritional value of raw Atlantic mackerel	93
9	Nutritional values of row onions	96
10	Nutritional Values of row garlic	102
11	The composition of standard diet	
12	The composition of salt mixture in one kg	103
13	The composition of vitamin mixture	104
14	Ingredients used for preparation of plant based meals	123
15	Ingredients used for preparation of animal based meals	124
16	Ingredients used for preparation of modified meals	126
17	Nutrient composition of tested meals (g/100g fresh sample)	128
18	Nutrient composition of porition size of tested meals	130
19	Glucose tolerance for glycose and tested plant based meals	133
20	Glucose tolerance for glycose and tested animal based meals	138

21	Glycemic Index (GI) and glycemic load (GL) of different studied meals	144
22	Triacylglycerols tolerance of tested plant based meals (mg/100ml)	146
23	Triacylglycerols tolerance of tested animal based meals	151
24	Lipimic responses of the tested meals	156
25	Nutrient composition of meals before and after modification (g/100g dry sample)	158
26	Nutrient composition of meals and modified meals (g/100g fresh sample)	159
27	Nutrient composition of portion size of meals before and after modification	160
28	Glucose tolerance of meals before and after modification	162
29	Comparison of glycemic Index and glycemic load of meals before and after modification	167
30	Food intake, feed efficiency ration and body weight of rats fed on experimental diets for 4 weeks	173
31	Plasma glucose of rats before and after feeding (4weeks) for normal and diabetics	176
32	Plasma lipid profile of studied groups fed meals before and after modification	179
33	Plasma lipid profile of control groups and studied groups fed meals before and after modification	180

List of Figures

Figure	Title	Page
1	Glucose tolerance curve of Glucose, Koshary and koskosi in normal rats	134
2	Glucose Tolerance curve of Glucose, Tamia, Tamia with bread and salad and Tamia with bread in normal rats	135
3	Glucose Tolerance curve of glucose, Bean, Bean with bread and salad and bean with bread in normalrats.	136
4	Glucose Tolerance curve of glucose, Besara and Besara with bread in normal rats	137
5	Glucose tolerance curve of glucose, Shawerma and Hawawshi in normal rats	139
6	Glucose Tolerance curve of glucose, Hamburgar and Kentaki fried chicken meal in normal rats	140
7	Glucose Tolerance curve of glucose, kentaki meal and Pizza in normal rats	141
8	Glucose tolerance curve of glucose and tested meals in normal rats	142
9	Triacylglycerol Tolerance curve of Sunflower oil, Koshary, Koskosi in normal rats	147
10	Triacylglycerol Tolerance curve of sunflower oil, Tamia, Tamia with bread and salad and Tamia with bread in normal rats	148
11	Triacylglycerol Tolerance curve of sunflower oil, Bean, Bean with bread and salad and bean with bread in normal rats	149
12	Triacylglycerol Tolerance curve of sunflower oil, Besara and Besara with bread in normal rats	150
13	Triacylglycerol Tolerance curve of sunflower oil, Shawerma and Hawawshi in normal rats	152
14	Triacylglycerol Tolerance curve of sunflower oil, Hamburgar and kentaki meal in normal rats	153
15	Triacylglycerol Tolerance curve of sunflower oil, kentaki meal	154

	and pizza in normal rats	
16	Triacylglycerol tolerance curve of tested meals in normal rats	155
17	Glucose Tolerance curve of koshary before and after modification	163
18	Glucose Tolerance curve of Tamia with bread and salad before and after modification	164
19	Glucose Tolerance curve of Hawawshi before and after modification	165
20	Glucose Tolerance curve of pizza before and after modification	166
21	Comparison of glycermic Index of koshary before and after modification	168
22	Comparison of glycemic Index of Tamia before and after modification	169
23	Comparison of glycemic Index of Hawawshi before and after modification	170
24	Comparison of glycemic Index of Pizza before and after modification	171

List of Abbreviations

ADA American Diabetes Association.

AHA American Heart Association.

AMD Age-related macular degeneration.

AOAC Association of Official Agricultural Chemists.

AUC Area Under Curve.
BG Blood Glucose.
BMI Body Mass Index.
BP Blood Pressure.

CETP Cholesterol –Ester Transfer Protein.

CHD Cornoary Heart disease.

CHO Carbohydrate.

CRP C-reactive protein.

CVD Cardio – vascular disease.

DHA Docosahexacnoic acid.

DM Dry matter.

DNA Deoxyribo nucleic acid.

EDTA Ethylene Diamine Tetracetic Acid.

EpA Eicosapentaenoic acid.

FAO Food and Agriculture organization.FDA Food and Drug AdministrationGGE Glycemic Glucose Equivalent.

GI Glycemic Index.

GIP Gastric inhibitory poly peptide.

GL Glycemic Load.

HbA1c Glycated hemoglobin.

HDL-C High Density Lipoprotein Cholesterol.

IHD Ischemic Heart Disease.

LDL-C Low Density Lipoprotein – Cholesterol.

LPL Lipoprotein Lipase.

LSMP Life Style Modification Programmes.

MOH Minister of Health.