

"Geological studies on Wadi Kalalat, South Eastern Desert, Egypt using Remote Sensing and GIS applications"

By

Ahmed Abdelfattah Ahmed Hamed Elnazer

B.Sc. Geology, 1998, South Valley University M.Sc. Geology, 2005, Ain Shams University

THESIS

Submitted for the Degree
Philosophy Doctor in Science
(Geology)

To
GEOLOGY DEPARTMENT
FACULTY OF SCIENCE
AIN SHAMS UNIVERSITY

"Geological studies on Wadi Kalalat, South Eastern Desert, Egypt using Remote Sensing and GIS applications"

By
Ahmed Abdelfattah Ahmed Hamed Elnazer
B.Sc. Geology, 1998, South Valley University
M.Sc. Geology, 2005, Ain Shams University

THESIS
Submitted for the Degree
Philosophy Doctor in Science
(Geology)

To GEOLOGY DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

APPROVAL SHEET

Ph. D. Thesis:

Name of Student: Ahmed Abdelfattah Ahmed Hamed Elnazer

Title of thesis: Geological studies on Wadi Kalalat, South Eastern

Desert, Egypt using Remote Sensing and GIS

applications.

SUPERVISORS:

Name	Position	Approval
1- Prof. Dr. Baher A. El-Kalioubi	Professor of Geology Geology Department, Faculty of Science, Ain Shams University	
2- Prof. Dr. Mohamed F. Sadek	Professor of Geology and Remote Sensing, Geology Department, National Authority for Remote Sensing and Space Sciences	
3- Prof. Dr. Mariem A. El hefnawi	Geology Department, Professor of Mineralogy and Geochemistry National Research Center	

Head of the Geology Department

Prof. Dr. Yasser Abdel-Hakeim El-Safori

Ain Shams University Faculty of Science Geology Department

Ph. D. Thesis:

Name of Student: Ahmed Abdelfattah Ahmed Hamed Elnazer

Title of thesis: Geological studies on Wadi Kalalat, South Eastern Desert, Egypt using

Remote Sensing and GIS applications.

ABSTRACT

The study area is situated near Bernice, along Red Sea Coast in the SED, Egypt; between Lat $24^{\circ} 05^{\circ} - 23^{\circ} 45^{\circ} N$ and Long $35^{\circ} 10^{\circ} - 35^{\circ} 25^{\circ} E$. It comprises the early orogenic rocks (Gneiss and Schist rocks) and late orogenic rocks (Ultrabasic and basic, granodiorite, monzogranite, dykes and veins). In Remote Sensing and GIS, Principal Component color images (PC3, PC6, and PC7), Minimum Noise Fraction image of MNFs (1, 2, and 3), and False Color Composite (FCC) of ASTER image of (4/6, 4/7 and 4/12) in (RGB) are good in discrimination of for lithlogic interpretation of all rock types. Petrographically, Gneiss is represented by migmatite gneiss consists of quartz, plagioclase, hornblende, and biotite; accompanied by epidot and sphene. They are of the stromatic variety with parallel layered leucosome and melanosome. Schist is principally made of hornblende and biotite, with minor pyroxene with plagioclase and quartz, with epidote and sphene. Ultrabasic rocks are Lherzolite (with cumulus texture). Basic rocks are gabbros (gabbro-norite, leuco-gabbro and mela-gabbro). Granodiorite is composed mainly of plagioclase (An₂₀ to An₃₀), quartz, K-feldspars (orthoclase and microcline) and minor amounts of biotite and hornblende. Monzogranite consists mainly of alkali feldspars, quartz and plagioclase (An₁₄ to An₂₅) in addition to biotite and muscovite. Sphene, garnet and iron oxides occurs as accessory minerals, while epidote as secondary minerals. Geochemically and Petrogensis, the migmatite gneiss is mainly related to intermediate-acidic composition especially granitic origin and varying from diorite to granodiorite in composition and of high grade of metamorphism. Schist is particularly related to igneous origin and of amphibolite facies. The most of ultrabasic and basic are of gabbro-diorite and diorite of calcic series, while a few samples are gabbro-diorite of calc alkalic. They have poor alkali nature with two magma types (most tholeiitic and few calc alkaline) of destructive plate-margin basalt and differentiate. Granites are calc-alkaline and of the acid differentiate; whereas Granodiorite is calcic and intermediate differentiate. Late orogenic Granites are tectonically syncollision and related to I-type granite.

Key words: Remote sensing, GIS, Petrology, Geochemistry, Petrogensis, Basement rocks, Gneiss, Schist, Gabbro, Ultrabasic, Granite, Granodiorite, Wadi Kallalat, Wadi Naait.

ACKNOLEDGEMENT

All gratitude is due to almighty God, who guided and aided me to bring forth to light this thesis.

I wish to express my great indebtedness and heartfelt thanks to Prof. Dr. Baher A. El-Kalioubi, Professor of Geology, Department of Geology, Faculty of Science, Ain Shams University, for his critical comments, valuable suggestion, and supervision.

All deep thanks also are due to Professor Dr. Mohamed F. Sadek, NARSS for his guidance and critical reading of the manuscript are highly appreciated.

I gratefully thank Prof. Dr. Mariem A. Elhefnawi, National Research Centre for continuous encouragement through supervising of the present work.

Sincere thanks are due to the former supervisor, Associate Professor Dr. Mohamed Wahbi Ali-Bik, Associate Professor of Geology Department, National Research Centre, for participating of proposing the plan of the study and help during the field work.

Deep thanks are also due to Dr. Said H. Abdel-Rahim, Researcher of Geology, National Research Centre, for his help during the field work.

All thanks must be to Prof. Dr. Mostafa Abdel Aziz, the former Head of Inorganic Industry and Mineral Resources Research Division, National Research Centre for his participating in planning of the present study.

My warmest thanks are due to Dr. Tolba A. Sadek Lecturer of Geology in Geology Department, Faculty of Science, Azher University for friendly cooperation.

. I am also grateful to all staff members of the Geology Department, National Research Centre, for their kind help, facilities offered during the work of this thesis. Also All thanks must be to all staff members of the Geology Department, Ain Shams University.

I would like to take this opportunity to express my gratitude to my family for thesis love and encouragement.

The Author

Ahmed Elnazer

CONTENTS

DED ABS ACK LIST LIST	TRACZ KNOWI F OF CO		Page I II III VI XIII
CHA	APTER	I: INTRODUCTION	
	Locati		1
I.2.	Acces	sibility	2
	Clima		2
		age and morphology	4
		al and previous work	7
		and aim of the study	12
	Plan o		12
1.8.	Metho		13
		Field-work and sampling	14
		Petrography investigation	15
	I.8.3.	•	16
		I.8.3.1. XRF analyses and sample preparation.	16
		I.8.3.2. Loss on ignition (L.O.I) content.	17
	T O 4	I.8.3.3. ICP analyses and sample preparation.	17
	I.8.4	Remote sensing and GIS.	18
CHA	APTER	II: GEOLOGIC SETTING	
II.1.	Early	orogenic stage.	22
	II.1.1	Gneiss	22
	II.1.2	Schist	25
II.2.	Late o	rogenic stage	27
	II.2.1.	Ultrabasic and Basic rocks.	27
	II.2.2.	Granodiorite.	30
	II.2.3.	Monzogranite.	34
II.3.	Dykes	and Veins.	38

CHA	PTER I	II: REM	OTE SENSING & GIS	
III.1.	Genera	al		40
III.2.	Digital	l Image Pr	rocessing	46
	III.2.1	_	al Component Analysis (PCA).	47
	III.2.2.	_	ım Noise Fraction (MNF).	54
		Band R		60
III.3	GIS in	tegration	with Remote Sensing	76
СНА	PTER I	V:PETR	OGRAPHY	
IV.1.	Early of	orogenic s	tage	78
	IV.1.1	. Migma	tite Gneiss	78
			1 General	78
		IV.1.1.	2 Petrography	80
	IV.1.2	. Schist		87
IV.2.	Late C	rogenic S	tage	91
		_	trabasic Rocks	91
	IV.2.2	. Basic F	locks	96
		IV.2.2.	1. Gabbro Norite	98
		IV.2.2.	2. Leucogabbro	102
		IV.2.2.	3. Melagabbro	106
	IV.2.3	. Late O	rogenic Granites	109
			1. Granodiorite	110
		IV.2.3.	2. Monzogranite	118
СНА	PTER V	v: GEOC	HEMISTRY & PETROGENESIS	127
	Genera			127
		-	nd Petrogenesis Gneiss	127
, ,_,	V.2.1	•	nistry of Gneiss	127
			Geochemical Classification and	129
			characteristics	
		V.2.1.2	Geochemical Characteristics of Major	131
		W 2 1 2	Oxides	122
		V.2.1.3	Niggli Values and CIPW Normative	133
	W 2 2	D.44	Composition	124
	V.2.2.	_	esis of Gneiss	134
	V.2.3	Type and	l grade of metamorphism for Gneiss	137

V.3.	Geoch	emistry a	nd Petrogenesis Schist	138
		•	nistry of Schist	138
			Geochemical Classification and	138
			characteristics	
		V.3.1.2	Geochemical Characteristics of Major	140
			Oxides	
		V.3.1.3	Niggli Values and CIPW Normative	142
			Composition	
		V.3.1.4	Magma Type	143
	V.3.2.	Petrogen	esis of Schist Rocks	144
V.4	Type a	_	of metamorphism for Schist	146
V.5			nd Petrogensis of Ultrabasic and Basic	147
		•	nistry of Ultrabasic and Basic Rocks	147
		V.5.1.1.		147
			characteristics	
		V.5.1.2.	Abundance of Chemical Components	153
		V.5.1.3		154
			Oxides and Trace Elements	
		V.5.1.4.	Niggli Values and CIPW Normative	158
			Composition	
		V.5.1.5.	Magma Type	160
	V.5.2.	Petroger	nsis of Ultrabasic and Basic Rocks:	162
		V.5.2.1.		164
		V.5.2.2.	Trace element relationships	165
V.6	Geoch		nd Petrogenesis of Granites	167
	V.6.1.	Geochen	nistry of Granites	167
		V.6.1.1	Geochemical Classification and	167
			characteristics	
		V.6.1.2	Abundance of Chemical Components	171
		V.6.1.3	Geochemical Characteristics of Major	171
			Oxides and Trace Elements	
		V.6.1.4	Niggli Values and NormativeComposition	176
		V.6.1.5	Magma Type	177
		V.6.1.6	Condition of Crystallization	179
	V.6.2.	Petrogen	esis of Granites	181
		V.6.2.1.	Spider Diagram	185
CHA	PTER Y		MARY AND CONCLUSION	190
	REFER	RNCES		199
	Arabic	Summary		

List of Figures

Fig. I.1	Location map of the study area.	1
Fig. I.2	Monthly temperature in the study area, according the	3
	Egyptian Meterological Authority maps (1996).	
Fig. I.3	Monthly Humidity in the study area, according the Egyptian	3
	Meterological Authority maps (1996).	
Fig. I.4	Drainage map network in the study area.	5
Fig. I.5	Basins map network in the study area	6
Fig. I.6	Geologic map around study area (After Abd-Elmohsen, 1998).	9
Fig. II.1	Lithologic map of the study area as yielded from remote sensing and field studies.	23
Fig. II.2	Lit-par-lit injection veins of the striped gabbro at Wadi Naait (leuco bands feldspars and melano bands of pyroxenes and amphiboles)	24
Fig. II.3	Gneissosity in migmatite gneiss at Wadi Naait.	24
Fig. II.4	Highly weathered and schistose texture in hornblende schist at Wadi Naait, north of the study area.	26
Fig. II.5	Granite intruding by hornblende schist at Wadi Naait.	26
Fig. II.6	Weathered Gabbroic rocks at Wadi Kallalat.	28
Fig. II.7	Jointed and weathered gabbroic rocks at Wadi Naait.	28
Fig. II.8	Ultrabasic body intruding gabbroic rock at Wadi Kallalat (El-Mutaghairat area)	29
Fig. II.9	Feldspar veinlets in Gabbroic rocks at Wadi Kallalat.	29
Fig. II.10	Photograph showing highly weathered granodiorite north of the study area	31
Fig. II.11	Photograph showing jointed granodiorite north of the study area.	31
Fig. II.12	Photograph showing exfoliation granodiorite north of the study area	32
Fig. II.13	Photograph showing xenoliths granodiorite the study area	32
Fig. II.14	Photograph showing contact between granodiorite and gabbroic rocks north of the study area.	33
Fig. II.15	Photograph showing boulders of granodiorite the study area.	33
Fig. II.16	Gabal Batoga granites at Wadi Kallalat	35
Fig. II.17	Boulders of Gabal Batoga granites at Wadi Kallalat	35
Fig. II.18	Vertical joints of Gabal Batoga granites at Wadi Kallalat	36
Fig. II.19	Exfoliation and boulder weathering of Batoga monzogranite at Wadi Kallalat area.	36

Fig. II.20	Photograph showing Gabbroic rock (A) is intruded by Batoga monzogranite (B) and the basic dyke (C) is extruded	37
	in the Batoga granite at the mouth of Wadi Kallalat.	
Fig. II.21	Photograph showing Batoga monzogranite (A) intruding the gabbro (B), in roof pendant relation, South of the study area.	37
Fig. II.22	Intrusive sharp contact between Batoga monzogranite (A) and gabbroic rocks (B) at Wadi Kallalat.	38
Fig. II.23	Basic dyke is dissecting Batoga monzogranite, Wadi Kallalat.	39
Fig. III.1	Reflectance spectra curve of some igneous rocks. Absorption troughs can be observed clearly even though noise existed within visible to near-infrared range (Li, 2010).	44
Fig. III.2	Emissivity spectra for common rock types (after Ninomiya et al.2005)	45
Fig. III.3	ASTER principal component color image of PCs (PC1, PC3, and PC6) in (RGB) in the study area.	52
Fig. III.4	ASTER principal component color image of PCs (PC3, PC6, and PC7) in (RGB) in the study area.	53
Fig. III.5	Minimum Noise Fraction (MNF) color image of MNFs (1, 2, and 3 in RGB) in the VNIR bands.	58
Fig. III.6	Minimum Noise Fraction (MNF) color image of MNFs (1, 2, and 3 in RGB) in the SWIR bands.	59
Fig. III.7	Spectral bandpasses of the ASTER VNIR and SWIR, and the reflectance spectra of typical minerals, rocks.	61
Fig. III.8	Spectral bandpasses of the ASTER TIR, and the emissivity (transmission) spectra of typical rocks	61
Fig. III.9	Spectral profile of average DN values of each rock. Bands (B4, B6, B7, B11 and 12) are preferred.	65
Fig. III.10	Band combination of (B4, B6, and B7) in R, G, and B of the study area.	66
Fig. III.11	Ratio (3/1) Aster image in the study area.	69
Fig. III.12	Ratio (6/4) Aster image in the study area.	70
Fig. III.13	Ratio (6/7) Aster image in the study area.	71
Fig. III.14	Ratio (4/7) in the study area.	72
Fig. III.15	Ratio band (4/12) in the study area.	73
Fig. III.16	False Color Composite (FCC) image of (3/1), (6/4) and (6/7)	74
118.111.10	in (RGB) for Aster Image in the study area.	, .
Fig. III.17	False Color Composite (FCC) image of (4/6), (4/7) and	75
C	(4/12) in (RGB) for Aster image in the study area.	
Fig. III.18	Lithologic map of the study area.	77
Fig. IV.1	Handspeciman of stromatic migmatites in Wadi Naait north	80
	of the study area	

Fig. IV.2	Photomicrograph showing parallel banding (gneissose texture) of gneiss	83
Fig. IV.3	Photomicrograph showing hornblende with plagioclase in melanosome migmatite gneiss	83
Fig. IV.4	Photomicrograph migmatite gneiss	84
Fig. IV.5	Photomicrograph showing Contact between leucosome and	84
11g. 1 v .5	melanosome	04
Fig. IV.6	Photomicrograph showing Leucosome in migmatite	85
Fig. IV.7	Photomicrograph leucosome in migmatite	86
Fig. IV.8	Photomicrograph showing leucosome in migmatite	86
Fig. IV.9	Photomicrograph showing Schistosity in Hornblende schist	89
Fig. IV.10	Photomicrograph showing Schistosity and prophyroblastic texture in Hornblende schist	89
Fig. IV.11	Photomicrograph showing green Hornblende and sphene in	90
E:- IV 10	Schistose texture in Schist	0.1
Fig. IV.12	Classification of the ultrabasic rocks according to Streckeisen	91
E: - IV/ 12	(1974).	0.4
Fig. IV.13	Photomicrograph showing orthocumulate texture of Post-	94
	cumulus (intercumulus) Augite with Relic grains of fresh	
E' 137.1.4	olivine, surrondeded by antigorite.	0.4
Fig. IV.14	Photomicrograph showing orthocumulate texture of Post-	94
	cumulus hypersthene, with Relic grains of olivine, surrondeded	
E' 137.16	by antigorite.	0.5
Fig. IV.15	Photomicrograph showing orthocumulate texture of Post-	95
	cumulus hypersthene, with Relic grains of olivine, surrondeded	
E. 11.46	by antigorite.	0.5
Fig. IV.16	Photomicrograph showing Cumulus augite and post cumulus	95
	plagioclase (intercumulus).	
Fig. IV.17	Classification of basic rocks according to Streckeisen (1974) (Pl-	97
	Pyx-Ol).	
Fig. IV.18	Classification of basic rocks according to Streckeisen (1974) (Pl-	97
	Opx-Cpx).	
Fig. IV.19	Photomicrograph showing clinopyroxene (diopside and augite)	100
	surrounding hypersthene with hornblende.	
Fig. IV.20	Photomicrograph showing olivine crystal mainly altered to	100
	iddengisite and surrounded by hypersthene.	
Fig. IV.21	Photomicrograph showing olivine crystal mainly altered to	101
	iddengisite and surrounded by hornblende and plagioclase.	

Fig. IV.22	Photomicrograph showing Diopside enclusing some minuts of carlesbad twining of plagioclase to show ophitic texture.	104
Fig. IV.23	Shiller structure of diopside rimed by hypersthene and both of them surrounded by plagioclase as cumulus texture.	104
Fig. IV.24	Photomicrograph showing high interference color of augite and particularly altered on periphery.	105
Fig. IV.25	Photomicrograph showing Olivine=Ol partially altered, augite and plagioclase enclused in the olivine crystal to show pokiolitic texture.	105
Fig. IV.26	Photomicrograph showing augite pentreting some pagioclase crystals to show subophitic texture.	107
Fig. IV.27	Photomicrograph showing Carlesbad and albite twins in plagioclase.	107
Fig. IV.28	Photomicrograph showing Hypyrsthene crystal surrounded by augite crystals.	108
Fig. IV.29	Photomicrograph Showing augite and olivine crystals rimed by secondary brownish hornblende.	108
Fig. IV.30	Plots of the modal composition of the investigated granitic rocks on QAP diagram of Streckeisen (1976).	110
Fig. IV.31	Photomicrograph showing saussoritization in the core of plagioclase crystals.	114
Fig. IV.32	Photomicrograph showing zonation and albite twining in plagioclase and surrounded by quartz crystals.	114
Fig. IV.33	Photomicrograph showing percline twin of plagioclase and surrounded by fine quartz and orthoclase crystals.	115
Fig. IV.34	Photomicrograph showing the altered orthoclase growing with tabular hornblende crystals.	115
Fig. IV.35	Photomicrograph showing flaky biotite crystal with apatite enclosing and corded by allanite.	116
Fig. IV.36	Photomicrograph showing flaky biotite crystal with hornblende and corded by plagioclase and quartz crystals.	116
Fig. IV.37	Photomicrograph showing cracked crystal of hornblende with epidote growth on periphery.	117
Fig. IV.38	Photomicrograph showing sphene crystal growing with prismatic biotite crystal.	118
Fig. IV.39	Photomicrograph showing crosshatch twining in microcline and is surrounded by quartz grains.	122

Fig. IV.40	Photomicrograph showing microcline altered in center to sericite and showing prismatic crystal of epidote.	122
Fig. IV.41	Photomicrograph showing the undulose extinction of quartz (Q) and strain perthite type enclosing some minutes altered plagioclase.	123
Fig. IV.42	Photomicrograph showing perthite of vein-strain type enclosing some corroded carlesbad twin lamellar of plagioclase and fine grain of epidote.	123
Fig. IV.43	Photomicrograph showing coarse grains of corroded quartz crystals.	124
Fig. IV.44	Photomicrograph showing fine grained quartz crystals.	124
Fig. IV.45	Photomicrograph showing coarse grained plagioclase deformation folded like shape.	125
Fig. IV.46	Photomicrograph showing subhedral deformed crystal of biotite.	125
Fig. IV.47	Photomicrograph showing simirohmbic crystal of sphene, iron oxides and epidote growing with medium grained quartz and biotite crystals.	126
Fig. IV.48	Photomicrograph showing garnet crystal rimed by mica and surrounded by plagioclase, perthite and quartz crystals.	126
Fig. V.1	SiO ₂ -(Na ₂ O+K ₂ O) diagram of Cox et al., (1979) for the studied migmatite Gneiss.	129
Fig. V.2	CaO-Na ₂ O-K ₂ O diagram of Hunter et al., (1978) for the investigated leucosome and melanosome.	130
Fig. V.3	SiO ₂ -(Na ₂ O+K ₂ O) diagram of Peacock, (1931) of the studied Gneiss.	130
Fig. V.4	Harker's variation diagrams of the major oxides of the investigated gneiss rocks.	132
Fig. V.5	Plotting of Burri and Niggli diagram (1945) for the investigated gneiss rocks.	134
Fig. V.6	Al ₂ O ₃ -FeO ^t binary diagram of Abdel-Rahman (1994) of the investigated gneiss.	135
Fig. V.7	(P ₂ O ₅ /TiO ₂ – MgO/CaO) binary diagram of Werner, (1987) of the investigated gneiss rocks.	135
Fig. V.8	FeOt-MgO-Al ₂ O ₃ ternary diagram of Pearce et al. (1977) of the investigated gneiss rocks	136
Fig. V.9	K ₂ O–SiO ₂ for the gneiss in the study area. Fields of partial melts of different rock sources are after Gerdes et al. (2000).	136
Fig. V.10	ACF diagram of Eskola (1939) of the investigated migmatite, the inserted fields modified by Manhica (1998).	137

Fig. V.11	SiO ₂ -(Na ₂ O+K ₂ O) diagram of Le Bas et al., (1986) of the studied Schists. The dashed line is after Irvine and Baragar, (1971).	139
Fig. V.12	SiO ₂ -(K_2O) diagram of Le Maitre et al., (1989) of the studied Schists.	139
Fig. V.12	Harker's variation diagrams of the major oxides of the investigated	141
11g. v.13	Schist rocks.	141
Fig. V.14	Plotting of Burri and Niggli diagram (1945) for the investigated Schist	143
11g. V.14	rocks.	143
Fig. V.15	AFM diagram of Irvine and Baragar (1971) of the investigated rocks.	143
Fig. V.16	(P ₂ O ₅ /TiO ₂ – MgO/CaO) binary diagram of Werner (1987) of the	144
U	investigated Schist.	
Fig. V.17	(Na ₂ O+K ₂ O) – TiO ₂) binary diagram of Zakrutin and Grigorenko,	145
C	(1968) of the investigated Schist rocks.	
Fig. V.18	$(Na_2O/K_2O) - SiO_2)$ binary diagram of Roser and Korsch, (1986) of	145
U	the investigated Schist rocks.	
Fig. V.19	ACF diagram of Eskola (1939) of the study Schists and gneisses the	146
U	Zo-Chl-Act field is after Winkler (1979).	
Fig. V.20	Plots of investigated basic rocks on R1-R2 discrimination diagram	152
C	(De La Roche et al., 1980).	
Fig. V.21	SiO ₂ -(Na ₂ O+K ₂ O) diagram of Cox et al., (1979) for plutonic rocks of	152
C	the study ultrabasic basic rocks.	
Fig. V.22	Ol-OPx-CPx classification diagram of Streckeisen, (1976) for the	153
C	investigated ultrabasic rocks.	
Fig. V.23	Harker's variation diagrams of Major oxides of the ultrabasic and	155
C	basic rocks	
Fig. V.24	Harker's variation diagrams of trace elements of the ultrabasic and	156
	basic rocks	
Fig. V.25	Plotting of the investigated ultrabasic and basic rocks on mafic and	159
	felsic index diagram of Simpson, (1954).	
Fig. V.26	Plotting of Burri and Niggli diagram (1945) of the late orogenic	159
	ultrabasic and basic rocks.	
Fig. V.27	AFM diagram of Irvine and Baragar, (1971) of the investigated	161
	ultrabasic and basic rocks.	
Fig. V.28	K ₂ O-SiO ₂ binary diagram of Gill, (1981) of the investigated ultrabasic	161
	and basic rocks.	
Fig. V.29	Plots of the investigated ultrabasic and basic rocks according to	163
	Mullen diagram (1983).	
Fig. V.30	Plots of the investigated ultrabasic and basic rocks on Hf\3-Th-Nb\16	163
	ternary diagram of Wood, (1980).	
Fig. V.31	Normalized spider diagram for the investigated ultrabasic basic rocks	164
	to primitive mantle, (Wood et al., 1979)	
Fig. V.32	Plots of ultrabasic basic rocks on Ni-Cr binary diagram (Rock et al.,	165
	1990).	

Fig. V.33	Plots of granitic samples on R1-R2 discrimination diagram (De La Roche et al., 1980).	170
Fig. V.34	SiO ₂ -(Na ₂ O+K ₂ O) diagram of Cox et al., (1979) quoted by Wilson, (1989) for plutonic rocks of the study granites.	170
Fig. V.35	Harker's variation diagrams of Major oxides of the granitic rocks.	173
Fig. V.36	Harker's variation diagrams of the trace elements of the investigated granitic rocks.	174
Fig. V.37	Plotting of the investigated the granitic rocks on mafic and felsic index diagram of Simpson, (1954)	176
Fig. V.38	Plotting of Burri and Niggli diagram (1945) of the granitic rocks	177
Fig. V.39	Maniar and Piccoli, (1989) diagram of the the granitic rocks.	178
Fig. V.40	SiO ₂ -Al ₂ O ₃ -(Na ₂ O+K ₂ O) ternary diagram of the late orogenic granites, discriminative field after Mac Donald and Bailey, (1973).	178
Fig. V.41	K ₂ O-SiO ₂ diagram for the granitic rocks (Rickwood, 1989).	179
Fig. V.42	An-Ab-Or ternary diagram after James and Hamilton, (1969) for the granitic rocks.	180
Fig. V.43	Plot of the investigated granitic samples on (Ga+Y) – (A/CNK) diagram of Damm et al., (1990).	181
Fig. V.44	R1 – R2 binary diagram of Batchelor and Bowden (1985) for the investigated granitic rocks.	182
Fig. V.45	K ₂ O-Na ₂ O diagram (Chappell and White, 1974) of Granitic rocks. The (A-type) field is after Liew et al. (1989).	183
Fig. V.46	AFM ternary diagram for the granitic rocks, all trends after Petro, et al. (1979).	184
Fig. V.47	Plots of the investigated granitic rocks on Nb-Y binary diagram of Pearce et al., (1984).	184
Fig. V.48	Normalized spider diagram for the investigated granitic rocks to primitive mantle, (Wood et al., 1979)	185
Fig. V.49	K-Rb variation diagram for the investigated granitic rocks, after Shaw (1968). Average crustal line (K/Rb= 1000, 250 and 100) ratio is after Taylor (1965).	187
Fig. V.50	K-Ba variation diagram for the investigated granitic rocks, average crustal ratio (K/Ba= 65) is after Mason (1966).	187
Fig. V.51	Rb/Sr variation diagram for the investigated granitic rocks, average crustal line (Rb/Sr= 10, 1 and 0.1) ratio is after Hanson (1978).	188
Fig. V.52	Rb/Sr variation diagram for the investigated granitic rocks, (after Condie (1973).	188