STUDY OF CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) GENE IN AZOOSPERMIC PATIENTS

THESIS SUBMITTED FOR PARTIAL FULLFILMENT OF MASTER DEGREE IN DERMATOLOGY AND VENEROLOGY

By AMAL MOHAMED MOUSTAFA M.B., B.CH

Under the Supervision of

PROF.DR. MOHAMED AHMED HABIB

Professor of Dermatology and Venereology Faculty of Medicine Ain Shams University

DR. TAREK MAHMOUD ALI

Assistant Professor of Dermatology and Venereology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2005

الأحتال أيتعال السأ

الأوال السيوال والأواد الأواد الشاد الثادي * الأواد الشادي الثادي الثادي الثادي الثادي الثادي الثادي والأثادي والأثادي الثادي والأثادي والأوادي والأدي والأوادي وا

بائد الأوسا

الايتين 49 ، 50 من سمرة الشمري

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and deepest thanks to *prof. Or. Mohamed Ahmed Habib*, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, for his valuable guidance, continuous encouragement and great effort in this study.

I am also grateful to *Dr. Tarek Mahmoud Ali*, Assistant Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, for his great help, meticulous supervision and expensive advises in this study in its final form.

Special thanks to *Dr. Tarek khaled El Maghraby*, Assistant prof.of molecular biology, Atomic energy Authority, for his great effort in practical work.

Finally, I would like to thank all members of my family my parents, my husband, my twin daughter and my beautiful son Ashraf for their continuous support.

Amal Mohamed

CONTENTS

	Page No.
Introduction and Aim of the Work	1
Review of Literature	3
* Autosomal Recessive Disorders	3
* Consanguinity and Autosomal Recessive Inheritance	6
* Cystic Fibrosis	
*** Etiology and Pathogenesis of CF	8
*** Clinical manifestations of CF	12
*** Congenital absence of vas deferens	16
* Spermatogenesis	18
* Azoospermia	27
* Testicular Biopsy	30
* Transrectal Ultrasonography	37
* Abdominal Ultrasonography	37
* Vasography	38
Material and Methods	39
Results	48
Discussion	64
Conclusion and Recommendations	68
Summary	69
References	71
Arabic Summary	

LIST OF TABLES

Table	Comment	Page No.
Table 1	Clinical and laboratory data of all cases.	51&52
Table 2	Numbers and percentage of normal &	53
Table 3	high FSH, result of CFTR in addition to TRUS findings in different histopathologic subgroups of the patients.	54
Table 4	The Chi-square, P-Value and	54
Table 5	significance of the results of FSH, CFTR and TRUS in the histopathologic subgroups of the patients.	55
Table 6	Number, percentage, and significance of FSH & CFTR results.	57
Table 7	Relation between CFTR result and volume of seminal fluid.	58
Table 8	Relation between CFTR result and different independent variables by Logistic regression analysis.	59

LIST OF FIGURES

Figure	Comment	Page No.
Fig. 1	Diagram of autosomal recessive inheritance.	4
Fig. 2	a,b,c,d Sa spermatid AV acrosomic vesicle F flagellum GA Golgi apparatus IB Intercellar bridgeds V vesicle	19
Fig.3	Schematic representation of the 3 AZF loci on the long arm of the Y chromosome.	25
Fig.4	The human Y chromosome has both a euchromatic and a heterochromatic region.	28
Fig.5	The AZF region on the distal euchromatic portion Of the Y chromosome is located important to the spermatogenic process.	29

	Pie represents different proportions of the		
Fig.6	testicular histopathologic findings in the	49	
	patients under study.		
Fig.7	Relation between CFTR result and	56	
rig./	testicular biopsy.	30	

List of Plates

Plate	Comment	Page No.
Plate 1	Microcentrifuge.	44
Plate 2	Polymerase Chain Reaction.	7-7
Plate 3	Submarine gel electophoresis.	45
Plate 4	Vertical gel.	43
Plate 5	Transillumnator.	46
Plate 6	Gel Ploraid Camera.	40
Plate 7	The genomic DNA extraction.	60
Plate 8	The polymerase chain reaction.	61
Plate 9	Testicular Biopsy showing hypohypoactive spermatogenesis.	62
Plate 10	Testicular Biopsy showing SCO.	62
Plate 11	Testicular Biopsy showing spermatogenic arrest.	63
Plate 12	Testicular Biopsy showing Fibrosis & hyalinization.	63

LIST OF ABBREVIATIONS

μ**g** Microgram

ul Microlitre

AD Autosomal Dominant

Ad Dark Type A Spermatogonia

Ap Pale Type A Spermatogonia

AR Androgen Receptor

AVD Absent Vas deferens

AZF Azoospermic Factor

B Type B spermatogonia

bp Base pair

cAMP Cyclic Adenosine monophosphate

CBAVD Congenital Bilateral Absent Vas deferens

CF Cystic Fibrosis

CFTR Cystic Fibrosis Transmembrane

Conductance Regulator

CUAVD Congenital Unilateral Absent Vas

deferens

DAZ Deleted in azoospermia

FSH Follicular Stimulating Hormone

g/l gram per litre

GnRH Gonadotrophine Releasing Hormone

ICSI Intracytoplasmic Sperm Injection

IVF In Vitro Fertilization

L Leptotene primary spermatocyte

ml Millilitre

n mol Nano mole

NOAZ Non Obstructive Azoospermia

OAZ Obstructive Azoospermia

P Pachytene primary spermatocyte

P.aeruginosa Pseudomonas Aeruginosa

P mol Pico mole

R Preleptotene primary spermatocyte

R domain Regulatory Domain

SCO Sertoli Cell only syndrome

Taq Taq polymerase

TRUS Transrectal Ultrasonography

URA Unilateral Renal Agenesis

WHO World Health Organization

Z Zygotene primary spermatocyte

Introduction

Infertility has been reported in 97 % to 98 % of male adults with cystic fibrosis. This condition is associated with azoospermia and defects in the anatomic transport of sperm cells, due mainly to congenital bilateral absence of vas deferens (*Gaillard et al.*, 1997).

Congenital bilateral absence of the vas deferens (CBAVD) is a rare cause of male infertility. The condition was found in 2 % of patients with obstructive azoospermia in the Edinburgh infertility clinic and obstructive azoospermia accounts for 0.9 % of male infertility worldwide (*Donat et al.*, 1997).

The cloning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and the cooperative research activity in mutation analysis have led to the establishment of genotype and phenotype correlations. The Δ F 508 + / + mutation was shown to be the most common genotype and usually associated with severe cystic fibrosis diseases, with lung and pancreatic failure and male infertility (*Tsui*, 1992).

A strong association between CBAVD and mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has been identified recently (*Donat et al.*, 1997).

Microdeletions affecting various parts of the long arm of the Y chromosome in approximately 10% of men with non obstructive azoospermia and severe oligozoospermia but not in a

fertile comparison population have been reported (Hargreave et al., 1996).

In the majority of cases, CBAVD can now be considered as a genital form of cystic fibrosis, presenting without the other clinical features of cystic fibrosis. Nevertheless, in about 20% of patients, CBAVD is associated with urinary tract malformations and in these cases the etiology of CBAVD is not related to defects in the CFTR gene (Augarten et al., 1994, Dumur et al., 1995, Casals et al., 1995, Mercier et al., 1995, Rave-Har et al., 1995).

Similarly, *McCallum T and colleagues* postulated that unilateral renal agenesis (URA) and CBAVD may have a non-CF mutation-mediated genetic basis that leads to abnormal development of the entire mesonephric duct at a very early stage in embryo development (< or = 7 weeks) (*McCallum*, *et al.*, 2001).

Aim of Work

This work aims to investigate the cystic fibrosis transmembrane conductance regulator (CFTR) gene in patients with azoospermia. Radiological imaging will check associated anomalies in urinary tract.

Autosomal Recessive Disorders

Of all the recognized single gene traits, more than half are inherited in an autosomal dominant pattern, one third are inherited in an autosomal recessive pattern, and the remainder are x-linked (*Thompson et al.*, 1991).

Autosomal recessive inheritance is the single largest category of mendelian disorders. Because autosomal recessive disorders result only when both alleles at a given loci are mutants, such disorders are characterized by the following features: -

- 1) The trait does not usually affect the parents, but siblings may show the disease.
- 2) Siblings have one chance in four of being affected (i.e., the recurrence risk is 25% for each birth). Fig. (1).
- 3) If the mutant gene occurs with a low frequency in the population, there is a strong likelihood that the proband is the product of a consanguineous marriage (*Cotran*, 1999).

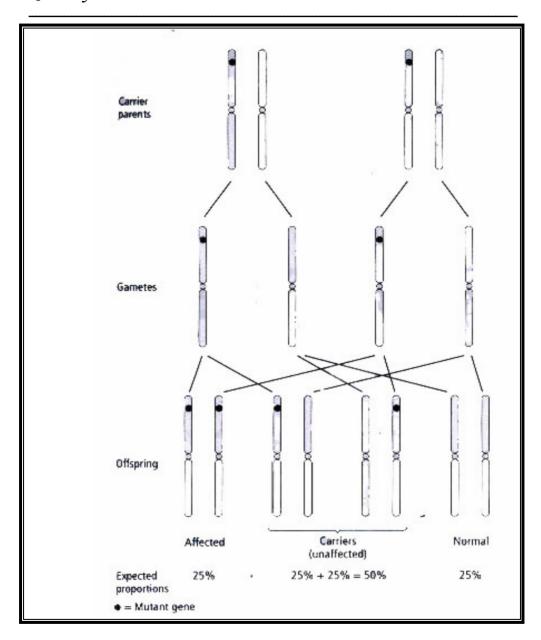


Fig. (1) Diagram of autosomal recessive inheritance (Connor, 1997).

In autosomal recessive conditions, both unaffected parents are carriers and each has one mutant copy and one normal copy of the gene. When both parents are carriers, they have a 25% chance with each pregnancy of having an affected child who inherits both copies of the mutant gene (*Roche and Kuller*, 1996).

In contrast to those of autosomal dominant diseases, the following features generally apply to most autosomal recessive disorders: -

- 1) The expression of the defect tends to be more uniform than in autosomal dominant disorders.
- 2) Complete pentrance is common.
- 3) Onset is frequently early in life.
- 4) Although new mutations for recessive disorders do occur, they are rarely detected clinically. Since the individual with a new mutation is an asymptomatic heterozygote, several generations may pass before the descendants of such a person mate with other heterozygotes and produce affected offspring.
- 5) In many cases, enzyme proteins are affected by a loss of function. In heterozygotes, equal amounts of normal and defective enzyme are synthesized. Usually the natural "margin of the safety" ensures that cells with half their usual complement of the enzyme will function normally (*Cotran*, 1999).