A Comparative Study of the Effect of Narrow Band Ultraviolet –B (NB-UVB) Phototherapy and Ultraviolet –A with Psoralen (PUVA)

Photochemotherapy on Serum Levels of Soluble Interleukin -2 Receptor (SIL-2R) before and after Treatment in

Psoriatic Patients

Thesis

Submitted For Partial Fulfillment of Master Degree in Dermatology and Venereology

By
Marwa Gomaa Mohamed El-Feky
(M.B., B.Ch)
Ain Shams University

Under the supervision of

Prof. Dr. Nagwa Mohamed Youssef
Professor and Head of the Department of Dermatology and
Venereology Faculty of Medicine
Ain Shams University

Dr. Marwa Salah El-Din Zaki

Lecturer of Dermatology and Venereology

Faculty of Medicine

Ain Shams University

Dr. Hanaa Mohamed El-Sayed Emam Assistant professor and Head of Dermatology and Venereology Research Department –National Research Center

Faculty of Medicine
Ain Shams University
2007

List of Contents

Title	Page
CHAPTER I: INTRODUCTION AND AIM OF THE	
WORK	1
CHAPTER II: REVIEW OF LITERATURE	6
Section I: An overview of psoriasis	6
I.A. Epidemiology	6
I.B. Clinical picture of psoriasis	7
I.C. Aetiopathogenesis of psoriasis	14
I.C.1. Genetic predisposition	
I.C.2. Precipitating factors	
I.C.3. Immunopathogenesis of psoriasis	
I.D. Histopathology of psoriasis	
I.E. Treatment of psoriasis	
I.E.1. Topical Therapies	
I.E.2. Phototherapy.	
I.E.3. Systemic Therapy	
I.E.4. Biological Therapy	
I.E.5. Combination, Rotational and Sequential Treatment	
Section II: Phototherapy in psoriasis	
II.A. Ultraviolet Radiation	
II.B. Psoralen Photochemotherapy (PUVA) in psoriasis	
II.B. 1. Historic Aspects	
II.B.2. Psoralens	
II.B.3. Mechanism of action of PUVA.	
II.B.4. Indications of PUVA in Psoriasis	
II.B.5. Side effects of PUVA	
II.B.6. PUVA Monitoring Guidelines	
II.B.7. Contraindications to PUVA Therapy	
II.B.8. UVA dosimetry and individual sensitivity	
II.B.9. PUVA protocols for treatment of psoriasis	
II.C. Narrow-Band (NB) UVB Phototherapy in Psoriasis	
II.C.1. Historic Aspects	
II.C.2. Advantages of NB-UVB	
II.C.3. NB-UVB protocols for treatment of psoriasis	
II.C.4. Mechanism of action of NB-UVB in psoriasis	
II.C.5. Narrow-band UVB phototherapy combination	
II.C.6. Contraindications.	
ILC 7 Adverse effects of NB-UVB	

List of Contents (Cont.)

Title	Page
Section III: Interleukin-2 and Interleukin-2 Receptor	72.
III.A. General features of cytokines	
III.B. Interleukin-2	
III.B.1. Historical Background	
III.B.2 Genetics	
III.B.3. Biochemistry	
III.B.4. Sources	
III.B.5. Actions of IL-2.	
III.B.6. Diseases associated with IL-2	79
III.C. Interleukin-2 Receptors	
III.C.1. Historical Background	
III.C.2. Biochemical Structure	
a. Alpha (α) subunit of IL-2R	82
b. Beta (β) chain of IL-2R	
c. Gamma (γ) chain of IL-2R	
III.C.3. Sources of IL-2R	
III.C.4. Regulation of IL-2R Expression	
III.C.5. Actions	
III.C.6. The IL-2 receptor as a target for immunotherapy	
III.D. Methods of Assay of sIL-2R	
III.D.1. Radioimmunoassay (RIA)	
III.D.2. Enzyme linked immunosorbent assay (ELISA)	89
CHAPTER III: SUBJECTS AND METHODS	91
CHAPTER IV: RESULTS	103
CHAPTER V: DISCUSSION	114
CHAPTER VI: SUMMARY AND CONCLUSION	122
CHAPTER VII: REFERENCES	126
ARARIC SUMMARY	

List of Tables

Ta	ıb. No	Subjects	Page
1.	2 0	sed definition of mild, moderate	8
2.	Potential psoriasis	-susceptibility loci	16
3.		emokines that play a role in the eade of psoriasis	32
4.		faction, dosage as well as ets of topical therapies used	36
5,		s in psoriasis (methotrexate, oral retinoids)	38
8.	_	strategies for the treatment of	41
9.	•	osage and monitoring required	42
10.	-	al therapy with cyclosporine	45
11.	The difference bety	ween UVA and UVB	48
12.	PUVA monitoring a	guidelines	59
13.	Contraindications	to PUVA therapy	60
14.	Scale for grading e	rythema	61
15.	Skin phototypes		61
16.	Summary of the da groups	ata of the patients and control	104
17.	treatment as rega	n group 1 (G1) before and after rds the mean PASI score and	106
18.	treatment as rega	n group 2 (G2) before and after rds the mean PASI score and	107

List of Tables (Cont.)

Tab. No	Subjects	Page
(G2) after t	n between group 1 (G1) and reatment as regards the mo	ean PASI
(G2) after t	n between group 1 (G1) and reatment as regards the m	ean sIL-2R
within grou	coefficient between sIL-2R up 1 (G1) and group 2 (G2)	
within grou	coefficient between sIL-2R up 1 (G1) and group 2 (G2)	after

List of Figures

Fi	g. No Subjects	Page
1.	T-lymphocyte activation by APCs	27
2.	T cell binding and trafficking into the dermis and epidermis	30
3.	The psoriatic cascade	31
4.	Histology of psoriasis	34
5.	Immunobiologics that target APC-T cell interaction	40
6.	Algorithm for the treatment of plaque psoriasis in healthy adults	45
7.	Classification of UV and visible radiation according to wavelength	47
8.	Chemical structure of 8-methoxypsoralen, trimethylpsoralen and 5-methoxypsoralen	50
9.	IL-2 is generated by Th cells	78
10.	The structure of high affinity IL-2R	81
11.	Comparison among the controls and the two groups of patients before treatment as regards the mean SIL-2R level	105
12.	Comparison within group 1 (G1) before and after treatment as regards the mean PASI score	106
13.	Comparison within group 1 (G1) before and after treatment as regards the mean sIL-2R level	107
14.	Comparison within group 2 (G2) before and after treatment as regards the mean PASI score	108
15.	Comparison within group 2 (G2) before and after	108

List of Figures (Cont.)

Fi	g. No Subjects	Page
16.	Comparison within group 2 (G2) before and after treatment as regards the mean sIL-2R level	109
17.	Comparison between group 1 (G1) and group 2 (G2) after treatment as regards the mean sIL-2R level	110
18.	Correlation coefficient between sIL-2R and PASI within group 1 (G1) and group 2 (G2) before treatment	112
19.	Correlation coefficient between sIL-2R and PASI within group 1 (G1) and group 2 (G2) after treatment	113

List of Abbeviations

AA	Arachidonic acid
ADCC	.antibody-directed cellular cytolysis
AIDS	Acquired immune deficiency syndrome
ANOVA	One way analysis of variance
APC	.Antigen presenting cell
ATL	Adult T- cell leukaemia
BB-UVB	Broad band- ultraviolet B
BSA	Body surface area
cAMP	Cyclic adenosine monophosphate
CD	Cluster of differentiation
cDNA	Cyclic deoxy ribonucleic acid
CLA	Cutaneous lymphocyte antigen
cm	centimeter
CsA	Cyclosporine
CTL	Cytotoxic T- lymphocyte
CTLA	Cytotoxic T-lymphocyte-associated antigen
DNA	Deoxy ribonucleic acid
EGF	Epidermal growth factor
ELISA	Enzyme linked immunosorbent assay
FDA	Food and Drug Adminstration
g	gram
G	Group
GM-CSF	Granulocyte macrophage colony stimulating factor
	Human immunodeficiency virus
HLA	Human leukocyte antigen
HSV	Herpes simplex virus
HTLV-1	Human T-lymphotrophic retrovirus type-1
ICAM	Intercellular adhesion molecule
	Interferon gamma
IL-2	Interleukin-2
IL-2Rα	Interleukin-2 receptor alpha
ILF	Interleukin-enhancer binding factor
IM	Intramuscular
IP	Inducible protein
IV	
J/cm2	Joules per square centimeter of irradiated skin

List of Abbeviations (Cont.)

Kb	Kilo base
kD	Kilodaltons
Kg	Kilogram
L	Liter
LAK	Lymphokine activated killer cells
LC	
	Leucocyte function associated antigen
	Minimal erythema dose
mg	milligram
MHC	Major histocomptability complex
	Monokine induced by interferon gamma
	milli joules per square centimeter of irradiated skin
ml	
mm	millimeter
5-MOP	5-methoxypsoralen
8-MOP	8-methoxypsoralen
MPD	Minimal phototoxic dose
	Messenger ribonucleic acid
mW/cm ²	milliwatt per square centimeter of irradiated skin
MXT	
NB-UVB	Narrow-band ultraviolet-B
NGF	Nerve growth factor
NK	Natural killer
nm	nanometer
NPF	National Psoriasis Foundation
P	Psoralen
PASI	Psoriasis area and severity index
PG	Prostaglandin
pg	picogram
PLE	Polymorphic light eruption
PMNL	Polymorphonuclear leucocytes
PPD	Purified protein derivative
	Psoriasis susceptibility locus
	Polyunsaturated fatty acid
	Psoralen and ultraviolet A
QOL	Quality of life

List of Abbeviations (Cont.)

r	Pearson correlation coefficient
RA	Rheumatoid arthritis
RCT	Randomized controlled trials
RF	Rheumatoid factor
RIA	Radioimmunoassay
RNA	Ribonucleic acid
SC	Subcutaneous
SD	Standard deviation
SDS-PAGE	Sodium dodecyl sulphate polyacrylamide gel
	electrophoresis
SIL-2Rα	Soluble interleukin-2 receptor alpha
SLE	Systemic lupus erythematosus
SP	Substance P
SPSS	Statistical package for social science
TB	
Tc	Cytotoxic T cell
TCGF	.T-cell growth factor
TCR	T cell receptor
	Transforming growth factor
Th	Helper T cell
TIL	.Tumor infiltrating lymphocytes
TMP	.4,5,8-trimethyl psoralen
TNF-α	.Tumor necrosis factor alpha
tx	therapy
UCA	.Urocanic acid
URI	Upper respiratory infection
UV	Ultraviolet
UVA	.Ultraviolet A
UVB	.Ultraviolet B
UVC	.Ultraviolet C
UVR	.Ultraviolet radiation
VCAM	Vascular cell adhesion molecule
VDR	.Vitamin D receptor
VEG-F	.Vascular endothelial growth factor
VLA	Very late appearing antigen

CHAPTER I

INTRODUCTION & AIM OF THE WORK

Introduction:

Psoriasis is a common chronic condition characterized by thick scaling red plaques which can be either localized or widespread (Gelfand et al., 2005). The characteristic histological finding of psoriasis is epidermal hyperproliferation with focal accumulation of neutrophils and lymphocytes. Above these foci, the granular layer is absent with parakeratosis, the accumulation of neutrophils within a spongiotic pustule is referred to as a "spongiform pustule of Kogoj" and the accumulation of neutrophil remnants in the stratum corneum, as a "microabscess of Munro". In the dermis the capillaries are dilated and tortuous with marked edema especially at the tops of the papillae. There is a mixed perivascular infiltrate of lymphocytes, macrophages and neutrophils (Ozawa and Aiba, 2004).

Psoriasis is considered to be a genetically programmed disease of dysregulated inflammation, which is driven and maintained by multiple components of the immune system. The pathologic collaboration between innate immunity (mediated by antigen presenting cells and natural killer T-lymphocytes) and acquired immunity (mediated by T-lymphocytes) results in the production of cytokines, chemokines and growth factors that contribute to the inflammatory infiltrate seen in psoriatic plaques (*Gaspari*, 2006).

Although the exact etiopathogenesis is unknown, there is growing evidence that activated T cells are the primary modulators the pathogenesis of psoriasis in keratinocyte hyperproliferation in the epidermis. This is further supported by the fact that increased levels of activated T lymphocytes are present in psoriatic skin plagues and blood of patients (Ellis and Krueger, 2001). The majority of T lymphocytes that localize to the dermis are of the CD4+ helper type, while those that migrate to the epidermis predominantly of CD8+ cytotoxic type (Menssen et al., 1995).

The activation of T cells by antigen-presenting cells (APCs) involves a cascade of pathways that ultimately leads to the production of a variety of cytokines which subsequently stimulate further T-cell activation, proliferation and cytokine production. The type 1/type 2 (Th1/Th2) paradigm describes two major classes of T cells that can be differentiated according to their cytokine patterns. T cells that produce IL-2, interferon (IFN)- γ and TNF- α are termed Th1 cells and contribute to cellmediated immunity. Conversely, T cells that release IL-4, IL-5 and IL-10 are termed Th2 cells, which augment humoral Th1 cytokines are proinflammatory and Th2 cytokines are anti-inflammatory (Szabo et al., 1998). Psoriasis can be considered as a Th1 dominant disease and as such produces a cytokine response with potent antibacterial properties (Prinz, 2001).

The involvement of T-lymphocytes in the pathogenesis of psoriasis can be described in terms of 4 events: the initial activation of T-lymphocytes, the proliferation and

differentiation of T- cells, the trafficking of T cells, and lastly the reactivation of T-cells (*Michael and Alan, 2006*).

Interleukin -2 (IL-2) is a lymphokine synthesized and secreted primarily by T helper lymphocyte. IL-2 stimulates the production of IL-2 receptor α (IL-2Rα) on the T cell surfaces. IL-2Rα is then released to the serum as a measurable protein; soluble interleukin -2 receptor (SIL-2R). The amount of sIL-2R is proportionally related to the amount of IL-2Rα expressed on the T cell surface (*Goldsmith and Greene, 1994*). Many studies have shown that serum sIL-2R levels are raised in patients with chronic plaque psoriasis (*De Rie et al., 1996*). Other studies have indicated that sIL-2R levels are well correlated with psoriasis area and severity index (PASI) score before and after treatment. Therefore, plasma sIL-2R levels could be regarded as a marker in psoriasis vulgaris activity during treatment (*Zalewska et al., 2006*).

Phototherapy has been known as an effective agent for the treatment of moderate to severe psoriasis, and it may be used in treatment of mild form of psoriasis in case of failure of topical therapy or if the site of psoriasis is psychologically devastating as facial psoriasis, scalp psoriasis or psoriasis of the palms (*Lebwohl*, 2005).

The efficacy of narrow-band ultraviolet-B (NB-UVB) for the treatment of psoriasis has been attributed to interference with DNA, RNA and protein synthesis in the hyperproliferative psoriatic plaques, alteration of various cytokines and other mediators of inflammation, as well as immunological effects. UVB also induces the expression of the tumour suppressor gene

P53, and this can lead to either cell cycle arrest or apoptosis of keratinocytes (Paul et al., 1994; Ibbotson et al., 2004). Sigmundsdottir et al. (2005) have demonstrated that the combination of UVB-induced apoptosis, increased secretion of anti-inflammatory cytokines and decreased trafficking to the skin may help to explain the beneficial effects of UVB treatment on psoriasis. However, De Rie et al. (1998) found that sIL-2R serum levels were not decreased in psoriatic patients receiving NB-UVB in spite of clinical improvement treatment indicating that does not induce systemic immunosuppression. It is therefore clear that the detailed mechanisms of action of TL-01 are not well defined (*Ibbotson* et al., 2004).

On the other hand, psoralen plus ultraviolet radiation (PUVA) is well documented to reduce circulating lymphocyte numbers and function leading to return of circulating helper / induced T cell numbers to normal with long term therapy by inducing apoptosis in lymphocytes. The conjunction of psoralens with epidermal DNA inhibits DNA replication and cell causes cycle arrest. photosensitivity also causes an alteration in the expression of cytokines and cytokine receptors (Honigsmann, 2001). Duncan et al. (1991) studied the effect of PUVA therapy on sIL-2R serum levels in psoriatic patients. It was found that levels of sIL-2R showed a strong correlation with PASI and found that PUVA significantly reduced the PASI and sIL-2R levels to a similar degree after 4 weeks of treatment.

Aim of the Work:

The aim of this work is to compare the effect of NB-UVB phototherapy and PUVA photochemotherapy on sIL-2R serum level as a marker of systemic T-cell activation in patients with psoriasis before and after treatment. A correlation will also be done between the severity of psoriasis as expressed by the PASI score and sIL-2R serum levels.