

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Diagnosis of Solid Objects underwater Using Laser Induced Plasma Spectroscopy Technique

A THESIS SUBMITTED BY

YVELOP

Hatem Salah El-Din Abdel-Hamied

B.Sc. In Electrical Engineering

Opto-Electronics and Automatic Control Department

Military Technical College

1994

For the fulfillment of requirements of M. Sc. Degree in Laser Sciences from the Department of Laser Engineering Applications

NATIONAL INSTITUTE OF LASER ENHANCED SCIENCES
(NILES),
CAIRO UNVERSITY
EGYPT
2010

Diagnosis of Solid Objects underwater Using Laser Induced Plasma Spectroscopy Technique

A THESIS SUBMITTED BY

Hatem Salah El-Din Abdel-Hamied

B.Sc. In Electrical Engineering

Opto-Electronics and Automatic Control Department

Military Technical College

1994

<u>SUPERVISING COMMITTEE:</u>

Prof. Mohy Saad Mansour

Dean of faculty of Engineering, Bani Sweif University, Beni Sweif, Egypt

Prof. of Mechanical Engineering, Faculty of Engineering,

Cairo University, Egypt.

Dr. Hisham Imam Mahmoud Hisha ~ I wam Lecture of Laser Physics, NILES, Cairo University, Egypt.

Dr. Khaled Abdelsabour Elsayd Thated El Sayed
Physics Dept., Faculty of Science, Cairo University, Egypt.

Acknowledgements

I'm deeply grateful to all the people who have supported and helped me towards the successful completion of this dissertation.

I wish to express my profound gratitude and sincere appreciation to **Professor Dr. Mohy Saad Mansour,** who all have been most generous with his supervision, guidance, advice, and encouragement throughout the preparation of this thesis.

I would like to express my gratitude to **Dr. Hisham Imam Mahmoud**, Assistant Professor of laser physics at NILES, Cairo University for his guidance, advice, generous help and scientific support in setting and analyzing the results of LIBS experiment.

Many thanks to **Dr. Khaled Abdel-Sabour El-Sayed** Assistant Professor of laser physics at Niles for his support and fruitful discussions, kind help and scientific support.

Many thanks to Lt.Eng. Ragaee Ahmed Rateb, Armed Forces Technical Research Center, for his assistance in doing the programming works.

I would like to thank my parents, brother Yasser and sister Rasha for being the best family any kid could wish for. Their love, support, and guidance have made me who I am today.

Last but not least, I wish to convey my deepest appreciation and utmost gratitude to my wife and beautifully children Farah and Amr for their meticulous encouragement and support, I adore to say here "they are all my life and love".

Above all, thank god

Contents

List of T	ables	I		
List of F	igure	II		
Abstract	•	X		
	r I: Introduction			
Chapte		1		
1.1	Common types of spectroscopy	1		
1.2	Laser induced plasma spectroscopy(LIBS)	4		
1.3	Significant milestones in the development of LIBS			
1.4	The advantages and drawbacks of LIBS technique:			
	1.4.1 The Advantages of LIBS Technique Over Conventional Methods	7		
	1.4.2 The Drawbacks of LIBS Technique	7		
1.5	Laser induced plasma	8		
1.6	- F	9		
1.7	Factors affecting laser plasma production:	11		
	1.7.1 Laser characteristics:	11		
	1.7.1.1 Wavelength and pulse duration	11		
	1.7.1.2 Irradiance	14		
	1.7.1.3 Directionality	15		
	1.7.1.4 Monochromaticity	16		
	1.7.2 Physical proprieties of the target material	16		
	1.7.3 Ambient condition:	17		
	1.7.3.1 Effect of liquid	18		
1.8	Laser material interaction:	20		
	1.8.1 Absorption of laser radiation	21		
	1.8.2 Vapor Expansion and Recoil Pressures	25		
1.9	3	27		
1.10	C 1	30		
1.11	•	31		
<u>Chapter</u>	II: Laser Induced Breakdown Spectroscopy	37		
2.1	Introduction	37		
2.2	Mechanism of laser induced breakdown	38		
2.3	Breakdown on solids surfaces	41		
2.4	Plasma parameters:	42		
	2.4.1 Line broadening	42		
	2.4.2 Plasma temperature	44		
	2.4.3 Electron density	49		
2.5	Plasma properties:	50		
	2.5.1 Complete thermo dynamic equilibrium	51		
	2.5.2 Plank's radiation law	51		

	2.5.3	Kirchhof	ff's law of radiation	51
	2.5.4	Boltzmai	n formula	52
	2.5.5	Saha equ	uation	53
		2.5.5.1	The physical meaning of saha equation	54
	2.5.6	Local Tl	hermal Equilibrium	55
2.6	Self-ab	sorption		56
2.7	Aim of	work		57
<u>apter</u>	III: Ex	<u>perimen</u>	<u>ital setup</u>	58
3.1	Basic	LIBS App	paratus:	58
	3.1.1		tation source	59
	3.1.2	Focusing	g and light collection	60
		Fiber opt	•	63
			igth selector	63
			ant power detector	66
	3.1.6	The com	puter	67
3.2	Experi	imental set	tup	67
Cha	pter IV	Result	s and Discussion :	72
4.1	Introd	uction		72
4.2	Qualit	ative analy	ysis:	73
	4.2.1	•	Emission:	73
		4.2.1.1	Effect of Gate Time Delay on spectra emission lines	74
		4.2.1.2	Effect of Gate Time Delay on Air Measurements	78
		4.2.1.3	Effect of Gate Time Delay on Underwater Measurements	81
		4.2.1.4	Comparison between air and underwater measurements	87
		4.2.1.5	Effect of Inter-pulse Delay on the Emission Spectra of Underwater LIBS measurements	90
	4.2.2	Electron	Density	94
	4.2.3	Plasma 7	l'emperature	100
4.3	Quant	itative ana	lysis:	113
	4.3.1	Calibrati	on curves and limit of detection	114
<u>Cha</u>	<u>pter V:</u>	Conclus	<u>sion</u>	128
Refe	rences			131
Appe	endix			137

List of Tables

Table (1-1)	The most used laser types in LIBS technique
Table (1-2)	Some Fluencies measurements reported by Vadillo et al,1999
Table (2.1)	Some measured breakdown thresholds on solids
Table (3-1)	List of LBS components
Table (4-1)	Selected spectral lines of Fe I and Zn I and corresponding spectroscopic data.
Table 4.2	Available spectroscopic data for LOD measured lines
Table 4.3	Certified composition of the samples
Table 4.3	Limits of detection and relative standard deviation values