A Comparative Study between Estradiol and Vaginal Progesterone with Induction of Ovulation in Unexplained Infertility

Thesis

Submitted in complete fulfillment of the MD Degree in Obstetrics & Gynecology

Presented by **Ayman Ahmed Hassan ABDALLA** (MB. B. Ch., MSc)

Supervised by

Dr. / Mohamed Hany ShehataProfessor of Obstetrics & Gynecology
Faculty of Medicine - Cairo University

Dr. / Ayman Abd El Halem
Professor of Obstetrics & Gynecology
Faculty of Medicine - Cairo University

Dr. / Mostafa Mohamed AbdAllah AbdelBar

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine - Cairo University

Faculty of Medicine Cairo University 2009

بسم الله الرحمن الرحيم

قالوا سبحانك لا علم لنا إلا ما علمتنا إنك انت العليم الحكيم

صدق الله

البقرة آية

العظيم

4 4

Acknowledgement

Thanks to Allah...

I wish to express my sincere gratitude to Prof. Mohamed Hany Shehata; Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University for his great and unlimited support.

I am deeply grateful to Prof. Ayman Abdel Halem; Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University for his kind support and sincere help to finish this work.

My deepest gratitude and respect is due to Dr. Mostafa Abdelbar Ass. Prof. of Obstetrics and Gynecology, Faculty of Medicine, Cairo University for suggesting the topic of this study and for the outstanding efforts he kindly offered along the whole study period.

Special thanks to my parents who gave me indefinite enthusiasm and encouraged me to finish this work.

Finally, my heartfelt thanks to my *wife* for her eternal beloved patience, support and love.

Ayman Hassan

Contents

List of Abbreviations	
List of Tables	
List of Figures	
Abstract	
Introduction	
Aim of Work	
Review of Literature	
Chapter 1,,,, Unexplained Infertility	16
Chapter 2,,,, Clomiphene Citrate	35
Chapter 3,,,, Ethinyl Estradiol	61
Chapter 4,,,, Progesterone	70
Patients and Methods	75
Results	80
Discussion	95
Conclusion	112
Summary	115
References	118

List of Abbreviations

ART : assisted reproductive technology

ASRM: American Society Of Reproductive Medicine

BBT: basal body temperature

BMI: body mass index

CC : clomiphene citrate

CCCT: clomiphene citrate challenge test

cGMP: cyclic guanosine monophosphate

CI : confidence interval

CL : corpus luteum

Cmax: maximum plasma concentration

CNS : central nervous system

COH : controlled ovarian hyperstimulation

CV : coefficient of variation

DIPI: direct intraperitoneal insemination

DNA: deoxy ribonucleic acid

E2 : estradiol

EE : ethinyl estradiol

eg. : example

ESHRE: European Society of Human Reproduction and Embryology

ET : embryo transfer

FDA: food and drug administration

FSH : follicle-stimulating hormone

FVW: flow velocity waveform

GIFT: gamete intra-fallopian transfer

GnRH: gonadotropin-releasing hormone

GnRHa: gonadotropin-releasing hormone agonist

GTN: glyceryl trinitrate

hCG: human chorionic gonadotropin

hMG: human menopausal gonadotropin

Ho : null hypothesis

HSG: hysterosalpingeography

HSSG: hysterosalpingosonography

ICD : international classification of diseases

ICSI: intracytoplasmic sperm injection

i.e. : that is to say (meaning)

IHD: ischemic heart disease

im : intramuscular

IU: international unit

IUI : intra-uterine insemination

IUGR: intra-uterine growth retardation

IVF : in-vitro fertilization

LH : luteinizing hormone

LUFS: luteinized unruptured follicle syndrome

mcg : microgram

mg : milligram

MHz: megahertz

Mm HG: millimeter mercury

MRI : magnetic resonance imaging

ng : nanogram

NHLBI: National Heart, Lung and Blood Institute

NO : nitrous oxide

OHSS: ovarian hyperstimulation syndrome

OI : ovulation induction

OPU: ovum pick-up

OR : odds ratio

P : Progesterone

PCOD: polycystic ovarian disease

PCT: post-coital test

PDE : phosphodiesterase

PEB: premenstrual endometrial biopsy

pg : pictogram

PI : pulsatility index

PRs : pregnancy rates

SA : Semen analysis

sc : subcutaneous

SE : standard error of mean

SEM : scanning electron microscope

SD : standard deviation

SGA: small for gestational age

SPSS: statistical package for social sciences

SRT : sperm recovery test

TI: timed intercourse

TIA: transient ischemic attack

Tmax: time to peak concentration

TVS: trans-vaginal sonography

UI : unexplained infertility

US : ultrasound

VOLss: volume of distribution

VTE: venous thromboembolism

WHO: world health organization

ZIFT: zygote intra-fallopian transfer

List of Tables

Table 1	Causes of Infertility	16
Table 2	ASRM evaluation of Infertility	20
Table 3	ESHRE Workshop	20
Table 4	Possible Etiologies of UI	21
Table 1-2	Age distribution	80
Table 2-2	BMI distribution	81
Table 3-2	Duration of infertility	82
Table 4-2	type of infertility	83
Table 5-2	Basic FSH level	84
Table 6-2	Basic E2 level (Pg/ml)	85
Table 7-2	D22 P level (ng/ml)	85
Table 8-2	Basal sperm count (106/ml) ar	nd
	Basal total sperm motili	ty86
Table 9-2	Day of triggering	87
Table 10-2	Number of follicles > 16 mm	ı88
Table 11-2	Number of follicles 9 - 16 mi	m89
Table 12-2	Endometrial thickness	90
Table 13-2	Luteal phase duration in a no	on
	pregnant patien	ts92
Table 14-2	Chemical pregnancy rate	93
Table 15-2	Clinical pregnancy rate	93

List of Figures

Figure 1	.Normal HSG	19
Figure 2	.Cervical mucous	.30
Figure 3	.Preovulatory Follicle	.41
Figure 4	.Dominant Follicle	.42
Figure 5	.OHSS	.46
Figure 6	.Hemorrhagic corpus luteum	.48
Figure 7	.Folliculometry in PCO	.55
Figure 8	.Trilaminar Endometrium	67
Figure 9	Non Trilaminar Endometrium	.69
Figure 10	Phases of the endometrium	73
Figure 1-2	Age distribution among study groups81	
Figure 2-2	BMI distribution among study groups	.82
Figure 3-2	Comparison of duration of infertility	
	among study group	.83
Figure 4-2	Comparison of type of infertility	
	among study group	.84
Figure 5-2	Basic Hormonal level	.86
Figure 6-2	Basal sperm count (10 ⁶ /ml) and Basal total	
	sperm motility	.87
Figure 7-2	Day of triggering	88
Figure 8-2	Number of follicles $9 - 16$ and > 16 mm at	
	day of hCG injection89	
Figure 9-2	Endometrial thickness at day of hCG injection	.90

Figure 10-2 . Luteal phase duration in a	
non pregnant patients among study group	9
Figure 11-2 Chemical and clinical pregnancy rate among study groups	03

Abstract

In the past few years, much interest has been focused on the possible effect of estradiol in reversing the antiestrogenic effect of CC on the endometrium, thus increasing the pregnancy rate. Another approach is the use of vaginal progesterone aiming as a luteal phase support.

Patients enrolled in this study were allocated to three groups; control group (*group I*) receiving CC induction alone, 2nd group (*group II*) receiving CC with ethinyl estradiol, 3rd group (*group III*) receiving CC with vaginal Progesterone, respectively.

The use of ethinyl estradiol or vaginal Progesterone with ovulation induction by CC would improve the endometrial parameters which are believed to be one of the most important predictive factors of successful implantation and hence better pregnancy rates.

• Keywords:

Unexplained Infertility – Clomiphene Citrate – Ethinyl Estradiol – Vaginal Progesterone.

Introduction

The assessment of the endometrium of infertile women undergoing induction of ovulation is one of the most controversial areas in the work of assisted reproduction. Adequate endometrial thickness and pattern at the time of ovulation assessed by ultrasonography and vascular impedance of the uterine artery using Doppler have been correlated with higher pregnancy rates in different studies (*Hock et al.*, 1997; Gerli et al., 2000; Tsai et al., 2000; Idriss et al., 2000; Sher and Fisch, 2000).

Since the introduction of clomiphene citrate, a synthetic non steroidal estrogen agonist and antagonist, in reproductive medicine in 1961, it has been widely used for induction of ovulation in anovulatory patients as well as super ovulation in patients with unexplained infertility. Although ovulation rate may reach up to 80%, pregnancy rate is much lower. This has been attributed to the adverse effects of CC on the endometrium leading to inadequate endometrial development that impairs implantation (*Phipps*, 2001; *Unfer et al.*, 2001; *Elkind-Hirsch et al.*, 2002).

The use of CC for induction of ovulation has long been described with high rates of ovulation but with discrepancy as regards pregnancy, partly attributed to the effect of Cc on the endometrium.

In the past few years, much interest has been focused on the possible effect of estradiol in reversing the antiestrogenic effect of CC on the endometrium, thus increasing the pregnancy rate (*Shimoya et al.*, 1999; *Gerli et al.*, 2000; *Unfer et al.*, 2001; *Elkind-Hirsch et al.*, 2002).

Another approach is the use of vaginal progesterone as luteal-phase support in ovulation induction. Although the benefit of P in the luteal phase has been well documented in IVF, there is little consensus among practitioners regarding the use of luteal-phase P supplementation in patients using oral medication (*Montville et al. 2009*).

A study is needed to compare the effect of clomiphene citrate alone; as well as the effect of adding estradiol to compensate for the deleterious effects of CC on the endometrium or the use of Progesterone to attain the same beneficial effect on the endometrium thus helping in implantation.

Aim of Work

To compare the pregnancy rates in patients with unexplained infertility using clomiphene citrate, and the effect of adding oral ethinyl estradiol or vaginal progesterone on the endometrium in contrast to a control group.

Review of literature