

Role of Anti Coagulants in Head Trauma

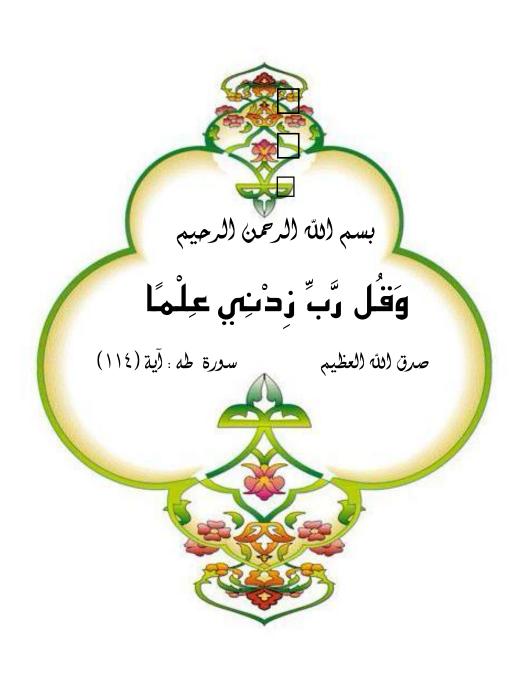
An Essay Submitted for Partial Fulfillment of Master Degree in Anesthesia

By Dina Emam Ahmed Emam (M.B.B.Ch.)

Supervised by

Prof. Dr. Galal Abou EL- Seoud Saleh

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine- Ain Shams University


Dr. Hadil Magdy Abd El-Hamid

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine- Ain Shams University

Dr. Mohamed Othman Taeimah

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2015

First and above all, my deepest gratitude and thanks to **ALLAH** for achieving any work in my life.

I find no words by which I can express my extreme thankfulness, deep appreciation and profound gratitude to my eminent **Prof. Dr. Galal Abou EI- Seoud Saleh,** Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his generous help, guidance, kind encouragement and great fruitful advice during supervision of this work.

Hamid, Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, who devoted her time, effort and experience to facilitate the production of this work.

And special thanks to **Dr. Mohamed Othman Tacimah**, Lecturer of Anesthesia and Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for his great help and support throughout this work.

Finally I would like to express my deepest thankfulness to **my Family** and **my Husband** for their great help and support that without them I can do nothing.

Dina Emam Ahmed Emam

Contents

List of Abbreviations
List of FiguresIV
Introduction1
Aim of the Work3
Review of Literature
- Chapter (1): Anatomy of Brain4
- Chapter (2): Pathophysiology of Head Trauma26
- Chapter (3): Acute Traumatic Coagulopathy67
- Chapter (4): Role of Anti Coagulant in Management of Head Trauma
Summary
References 105
Arabic Summary

List of Abbreviations

Abb.	Mean
ACA	Anterior cerebral artery
ACoA	Anterior communicating artery
ADAMTS-13	A disintegrin and metal loprotease with
	thrombospondin type 1 repeats
ATC	Acute traumatic coagulopathy
$AVDO_2$	Arteriovenous Difference Of Oxygen
$AVDO_2$	Arteriovenous Difference Of Oxygen
BBB	Blood Brain Barrier
CBF	Cerebral Blood Flow
CBF	Cerebral Blood Flow
CMR	Cerebral Metabolic Rate
$CMRO_2$	Cerebral Metabolic Rate of Oxygen
CNS	Central Nervous System
CO	Cardiac output
CO_2	Carbon Dioxide
CPP	Cerebral Perfusion Pressure
CPP	Cerebral Perfusion Pressure
CRASH	Clinical Randomization of an
	Antifibrinolytic in Significant Hemorrhage'
CT	Computed Tomography
CVP	Central Venous Pressure
CVR	Cerebral vascular resistance
CVR	Cerebrovascular resistance
DNA	Deoxyribonucleic acid
DVT	Deep vein thrombosis
EEG	Electroencephalography

Abb.	Mean
ELISA	Enzyme-linked immunosorbent assay
GCS	Glasgow Coma Scale
H_2O_2	Hydrogen peroxide
HAT	Heparin-associated thrombocytopenia
ICA	Internal carotid artery
ICP	Intracranial pressure
IgG/M	Immunoglobin G/M
IJV	Internal jugular vein
IL	Interleukin
JVP	Jugular venous pressure
LMWHs	Low-molecular-weight heparins
MAP	Mean arterial pressure
MCA	Middle cerebral artery
MPE	Massive pulmonary embolism
NMDA	N-Methyl-D-Aspartate
\mathbf{O}_2	Superoxide anion
ОН	Hydroxyl free radical
PAF	Platelet activating factor
PaO ₂	Arterial Oxygen Tension
PC	Phosphotidylcoline
PCA	Posterior cerebral artery
PCoA	Posterior communicating artery
PE	Phosphatidylethanol-amine
PE	Pulmonary embolism
PS	Phosphatidyl serine
PSGL-1	P-selectin glycoprotein ligand 1
PTT	Partial Thromboplastin Time
PVC	Pulmonary vascular capacitance

Abb.	Mean
RAP	Right atrial pressure
RVEDP	Right ventricular end-diastolic pressure
RVM	Rostral ventrolateral medulla
RVPP	Right ventricular coronary perfusion
	pressure
SCA	Superior cerebellar artery
sICAM	Soluble intercellular adhesion molecules
TBI	Traumatic Brain Injury
UFH	Unfractionated heparin
VIP	Vasoactive intestinal peptide
VIP	Vasoactive Intestinal Peptide
VR	Venous return
VTE	Venous thromboembolism
VTE	Venous thrombo-embolism
VWF	Von Willebrand factor

List of Figures

Figure	Title	Page	
1	Principal fissures and lobes of the cerebrum viewed	5	
	laterally	5	
2	Functional areas of the human brain		
3	Anatomy of brain stem	9	
4	Arachnoid space, illustrating relationship to dura and		
	pia and entry for venous blood and CSF into the	13	
	superior sagittal sinus		
5	Anatomy of the Circle of Willis	18	
6	Venous drainage of the brain	22	
7	Circulation of cerebral spinal fluid	25	
8	The effect of PaCO ₂ and PaO ₂ on CBF In normal		
	brain CBF is kept constant through autoregulation	33	
	between 50-150 mmHg		
9	ICP pressure-volume relationship	44	
10	Potential sites of brain herniation	45	
11	The different components of TBI with ischaemic		
	damage are superimposed on the primary types of		
	injury		
12	Pathophysiology of ischemia	63	
13	Sequence of events following TBI	66	
14	Schematic of hemostasis and coagulation	71	
15	Synthesis and multimerization of von Willebrand	75	
	factor	75	
16	Lipid microdomains in cell membrane	79	
17	The original iteration of the Parkland Protocol before	ol before 96	
	validation	90	

INTRODUCTION

Traumatic brain injury (TBI)is worldwide leading cause of death and disability in the young and the fifth cause of death in old patient beyond 65 years old; Deep venous thrombosis is the significant factor of increased morbidity and mortality (*Kim et al.*, 2012).

Trauma causes an acute disruption of the equilibrium all components of haemostasis (coagulation, between anticoagulation, fibrinolysis, platelets and endothelium). In patients with a combination of severe tissue damage and systemic hypoperfusion, this will progress rapidly to an endogenous coagulopathy that is independently associated with worse outcomes. New discoveries of the interactions between neurohormonal, vascular, and coagulation systems beginning to explain how this haemostatic impairment develops and offer novel targets for therapeutic manipulation. Routine coagulation screening tests are ineffective for diagnosing ATC and guiding resuscitation in optimum time. Viscoelastic coagulation tests have emerged as practical, rapid and sensitive diagnostic modalities. Their role in therapeutic targeting requires further validation (Frith et al., 2012).

Introduction

is evidence of There clear increased risk of pulmonary thromboembolism and embolism so, pharmacological prophylaxis for prevention of venous thromboembolism should be initiated as early as possible (Cohen et al., 2006).

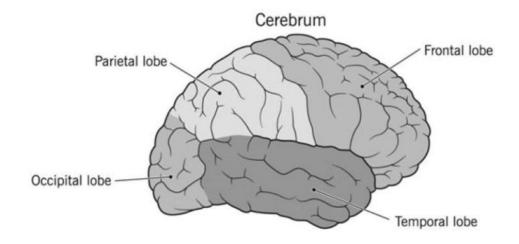
AIM OF THE WORK

The aim of the work is to clarify the role of anticoagulants in treatment of head trauma (brain injury) its timing and indication.

ANATOMY OF THE BRAIN

The central nervous system (CNS) can be divided into brain and spinal cord. The brain, is contained within the cranium, and constitutes the upper, greatly expanded part of the central nervous system. The average weight of the brain, in the adult male, is about 1380 gm; that of the female, about 1250 gm.

The Cerebral Hemispheres


The cerebral hemispheres constitute the largest part of the brain. The hemispheres are separated medially by the longitudinal cerebral fissure. They are connected across the middle line by the corpus callosum. Each possesses a central cavity (the lateral ventricle) and presents three surfaces: lateral, medial, and inferior. These three surfaces are separated from each other by the borders: supero-medial, infero-lateral, medial occipital and medial orbital.

The surfaces of the hemispheres are moulded into a number of irregular eminences, named gyri or convolutions, and separated by furrows termed fissures or sulci. By means of these fissures and sulci, assisted by certain arbitrary lines, each hemisphere is divided into the following lobes: the frontal, the

Chapter (1): Anatomy of the Brain

parietal, the temporal, and the occipital (Mendoza and Foundas, 2008).

The anterior end of the hemisphere is named the frontal pole; the posterior end, the occipital pole; and the anterior end of the temporal lobe, the temporal pole.

Figure (1): Principal fissures and lobes of the cerebrum viewed laterally *(Fine, 2008)*.

Structure of the Cerebral Hemispheres:

The cerebral hemispheres are composed of gray and white substance.

The white substance consists of medullated fibers, varying in size, and arranged in bundles separated by neuroglia.

Chapter (1): Anatomy of the Brain

They may be divided, according to their course and connections, into three distinct systems:

- 1. Projection fibers connect the hemisphere with the lower parts of the brain and with the spinal cord.
- 2. Transverse or commissural fibers unite the two hemispheres.
- 3. Association fibers connect different structures in the same hemisphere.

The gray substance of the hemisphere forms the cerebral cortex, the caudate nucleus, the lentiform nucleus, the claustrum, and the nucleus amygdalae. The cortex is made up of nerve cells of varying size and shape, and of nerve fibers which are either medullated or naked axis-cylinders, imbedded in a matrix of neuroglia (*Mendoza and Foundas*, 2008).

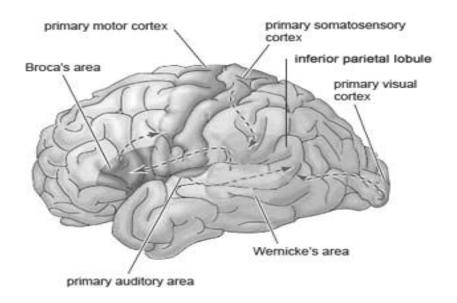


Figure (2): Functional areas of the human brain (Fine, 2008).

Cerebral Localization:

a- Motor Areas

The motor area occupies the anterior central and frontal gyri and the paracentral lobule. The centers for the lower limb are located on the uppermost part of the anterior central gyrus and its continuation on to the paracentral lobule. Those for the trunk are on the upper portion, and those for the upper limb on the middle portion of the anterior central gyrus. The facial centers are situated on the lower part of the anterior central gyrus.