Diabetes Mellitus in the First 2 Years of Life

Thesis

Submitted for Partial Fulfillment of M.Sc. Degree in Pediatrics

By

Gehan Mohamed el Sayed el Gayar.

M.B. & B.ch.Cairo University-2002

Under Supervision of

Dr. Mona Attia Hana.

Professor of Pediatrics Faculty of Medicine Cairo University

Dr. Yasser Hussien Kamel.

Associate Professor of Pediatrics Faculty of Medicine Cairo University

Dr. Nevine El Said El Helaly.

Associate Professor of Pediatrics Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University

> > 2009

Acknowledgment

First of all, thanks are all due to "ALLAH" for blessing this work until it has reached its end.

I would like to express my deepest gratitude to **Prof. Dr. Mona Attia,** Professor of Pediatrics, Faculty of Medicine, Cairo University, for her great support and continuous encouragement throughout this whole work. It is a great honor to work under her guidance and supervision.

I am truly grateful to **Dr.Yasser Hussien Kamel.**, Associate Professor of Pediatrics, Faculty of Medicine, Cairo University, for his close supervision, sincere help, valuable suggestions and continuous encouragement throughout the whole work.

My deepest appreciation and thanks are due to **Dr** .Nevine **ElSaid El Helaly**, Associate Professor of Pediatrics, Faculty of Medicine, Cairo University, for her kind advice and constant help throughout this work.

Lastly, I would like to thank staff of DEMPU, my patients and everyone who helped in completing this work.

ABSTRACT

The onset of type 1 diabetes before the first year of age is a rare condition and is probably due to an interaction between genetic and environmental factors. Infantile onset diabetes needs to be distinguished from "Neonatal diabetes" which can be either permanent or transient. The aim of the current study is to describe the clinical characteristics and laboratory findings and the different triggering factors in patients who developed permanent diabetes mellitus during the first two years of their life. There was a slight female predominance with male to female ratio 1:1.2, their average age of onset was 13.65 months. The highest percent (92%) were presenting with polyurea / polydepsia, (66%) were presenting with weight loss, (50%) were presenting with DKA. Thirty eight (76%) of studied patients had cow milk before the age of 1 year, 28(56%) were exclusively breast fed till the age of 6 months and 29(58%) of the patients have +ve family history of diabetes. In conclusion, we focused on an important age group of diabetic patients with early onset of the disease and the importance of avoiding exposure to the different predisposing factors which may precipitate early onset of diabetes.

Key words: Infantile onset diabetes- Neonatal diabetes- predisposing factors –cow milk.

Index

	Page
List of Tables	II
List of Figures	IV
List of Abbreviations	V
Introduction	1
Aim of the work	4
Review of Literature	5
Diabetes mellitus	5
Neonatal diabetes mellitus	46
Patients and Methods	69
Results	72
Discussion	85
Summary and Conclusions	92
Recommendations	94
References	95
Appendix	
Arabic summary	

List of Tables

Table	Table Title	
No.		
1	Type1 diabetes mellitus susceptibility loci.	9
2	Etiologic classification of Diabetes Mellitus.	16
3	The clinical and biological characteristic of the different	
	subtypes of type1 diabetes.	21
4	Criteria for the diagnosis of diabetes mellitus.	22
5	Currently Available Insulin Preparations.	29
6	The energy intake recommendations.	42
7	Age-specific plasma blood glucose and HbA _{1C} targets for	
	children and adolescents with type 1 DM.	44
8	Etiologies of neonatal diabetes mellitus.	51
9	Monogenic forms of diabetes.	55
10	Comparison of Transient Neonatal Diabetes (TND) and Permanent Diabetes Mellitus in Infancy (PDMI).	60
11	Distribution of patients according to sex.	72
12	Weight & height SDS.	73
13	Distribution of patients according to age of onset of diabetes.	73
14	Distribution of patients according to Presentation of the disease.	74
15	Distribution of patients according to season of onset of diabetes.	75
16	Distribution according to different predisposing factors.	76
17	Laboratory data of studied patients.	78
18	Distribution of patients according to HbA ₁ c.	79
19	Distribution of patients according to insulin treatment.	80
20	Distribution of patients according to insulin doses U/kg.	81

Table No.	Table Title	
21	Correlation between insulin type & mean HbA1c.	82
22	Correlation between age of onset & sex of the patient.	82
23	Correlation between age of onset of diabetes & developmental history.	83
24	Correlation between age of onset of diabetes & different predisposing factors.	84

List of Figures

Figure	Figure title	
No.		
1	Idealized insulin time-action profiles.	30
2	Schematic representation of idealized insulin effect	
	provided by three daily injections with rapid-acting	
	insulin at meals and two daily injections of	
	intermediate-acting insulin at breakfast and at bedtime.	34
3	Schematic representation of idealized insulin effect	
	provided by three daily injections with rapid-acting	
	insulin at meals and once daily insulin glargine at	
	bedtime.	34
4	The insulin pump.	37
5	My pyramid.	39
6	ATP dependent K ⁺ channel.	49
7	Genetic causes of NDM.	54
8	Age of onset distribution among study group.	
9	Distribution of patients according to Presentation of the disease.	75
10	Different Predisposing factors.	
11	Diabetes control among study patients according to HbA _{1C} level.	
		79
12	Distribution of patients according to insulin treatment.	81

List of Abbreviations

ABCC8	ATP binding cassette, subfamily C, member 8			
ADA	American Diabetes Assoiation			
Alb/Creat Ratio	albumin/ creatinine ratio			
AST	Aspartate aminotransferase.			
B.F	Breast feeding			
BG	Blood glucose			
CDA	Canadian Diabetes Association			
CM	Cow milk			
CSII	Continuous Subcutaneous Insulin Infusion			
CTLA-4	cytotoxic T lymphocyte-associated 4			
DEMPU	Diabetes Endocrine and Metabolism Paediatric Unit			
DKA	Diabetic ketoacidosis			
DM	Diabetes mellitus			
EUR	European			
FPG	Fasting plasma glucose			
GAD65	glutamic acid decarboxylase			
GCK	glucokinase			
GDM	Gestational diabetes mellitus			
GE	Gastroentritis			
GLP1	glucagon-like peptide 1			
НВ	hemoglobin.			
HbA _{1c}	Haemoglobin A1c			
HBW	High bith weight			
HLA	human leukocyte associated antigen			
IDDM	Insulin dependent diabetes mellitus			
IFN-g	interferon-gamma			
IL-2	interleukin-2			
INS	Insulin gene.			
IPEXsyndrome	immune dysregulation, polyendocrinopathy with			

	neonatal DM, enteropathy and X-linked thrombocytopenia			
IPF1	insulin promoter factor-1			
IPF-1	Insulin promoter factor-1.			
ISPAD	International society for pediatric and adolescents diabetes			
IUGR	Intra urtine growth restriction			
IZS	Insulin Zinc Suspension			
KCNJ11	The potassium channel, inwardly rectifying subfamily J, member 11			
LBW	Low birth weight			
MDI	Multiple Daily Injections			
MODY	Maturity-onset diabetes of the young			
NDM	Neonatal diabetes mellitus			
NPH	Neutral protamine hagedorn			
OGTT	Oral glucose tolerance test.			
PDMI	Permanent Diabetes Mellitus in Infancy			
PDX-1	pancreas duodenum homeobox 1			
PNDM	Permanent neonatal diabetes mellitus			
POLY U	Polyurea			
S.creat	serum creatinine.			
SDS	standard deviation score			
SEA	South-East Asian			
SMBG	Self monitoring of blood glucose			
SUR1	sulfonylurea receptor 1			
T h1 cells	T helper 1 cells			
T NDM	Transient neonatal diabetes mellitus			
T1D	Type1 diabetes			
T1DM	Type1 diabetes mellitus			
T2DM	Type2diabetes mellitus			
T4	Thyroxin hormone			

TNF-b	tumour necrosis factor-b
TSH	thyroid stimulating hormone
URTI	Upper respiratory tract infections
WP	Western Pacific
WT loss	Weight loss

INTRODUCTION

Diabetes mellitus is a metabolic disease characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The chronic hyperglycemia of diabetes is associated with long term damage, dysfunction and failure of various organs, especially the eye, kidney, nerves and blood vessels (ADA, 2008).

Type 1 diabetes is a serious disease that approximately affect 4.9 million people (in all age groups), amounting to 0.09% of the world's population. The number of people with diabetes is expected to increase alarmingly in the coming decades. In 1985 an estimated 30 million people worldwide had diabetes & in 2000 little over a decade later, the figure had risen to over 150 millions. This figure is expected to rise to almost 350 million by 2025 (*Stern et al., 2005*).

The onset of type 1 diabetes before the first year of age is a rare condition and is probably due to an interaction between genetic and environmental factors, which together may explain such an early event (*Tannus et al.*, 2007).

Environmental triggers in infancy and early childhood may accelerate the onset of diabetes. For example, enteroviral infection documented by polymerase chain reaction was detected in twins developing type 1 diabetes in infancy, before detection of islet-cell antibodies. (*Hathout*, 2003).

In recent years, several viruses have been implicated in the pathogenesis of type 1 diabetes. Children with a congenital rubella infection commonly acquire type 1 diabetes and children who develop diabetes have experienced more enterovirus infections than control subjects before the appearance of autoantibodies and in fetal life. Single

reports have also connected mumps and cytomegalovirus infections with type 1 diabetes. (*Blomqvist et al.*, 2002).

According to a Swedish study, children who are exclusively breastfed for a long period of time may be at lower risk of developing type 1 diabetes than those who are not. The researchers also found that postponing new foods and cow's milk seemed to be protective against the development of type 1 diabetes. (*Brekke et al.*, 2005).

Another theory is that breastfed children tend to grow more slowly and steadily while formula-fed babies often have growth spurts. That is because mother's milk contains fewer calories than formula. (Sadauskaite et al., 2004).

Breast milk protects against enteric infections; enteric infections in turn could increase immunity to dietary antigens by increasing intestinal permeability. It is also possible that an alteration in gut mucosal immune function in genetically susceptible individuals underlies any effect of dietary or viral proteins on the development of islet autoimmunity in early life. (*Couper*, 2001).

Cow's milk feeding is an environmental trigger of immunity to insulin in infancy that may explain the epidemiological link between the risk of type 1 diabetes and early exposure to cow's milk formulas. This immune response to insulin may later be diverted into autoaggressive immunity against beta-cells in some individuals, as indicated by our findings in children with diabetes-associated autoantibodies. (*Vaarala et al*, 1999).

Infantile onset diabetes needs to be distinguished from "Neonatal diabetes" which is a rare entity. In the majority of such cases, however, the diabetes disappears within few weeks to few months and this

condition is termed as "Transient Diabetes Mellitus of New Born" or "Transient Neonatal Diabetes Mellitus". Very few of these cases continue to have permanent diabetes whereas onset of diabetes after one month of age i.e. infantile onset diabetes is likely to be permanent and therefore termed as Permanent Diabetes Mellitus of Infancy (*Kumar*, 2002).

NDM is a monogenic form of diabetes that occurs in the first 6 months of life. It is a rare condition occurring in only one in 100,000 to 500,000 live births. Infants with NDM do not produce enough insulin, leading to an increase in blood glucose. NDM can be mistaken for the much more common type 1 diabetes, but type 1 diabetes usually occurs later than the first 6 months of life. In about half of those with NDM, the condition is lifelong and is called permanent neonatal diabetes mellitus (PNDM). In the rest of those with NDM, the condition is transient and disappears during infancy but can reappear later in life; this type of NDM is called transient neonatal diabetes mellitus (TNDM). Specific genes that can cause NDM have been identified (*Sperling et al.*, 2007).

AIM OF WROK

The aim of the current retrospective/prospective study is to describe the clinical characteristics and laboratory findings and the different triggering factors in patients who developed permanent diabetes mellitus during the first two years of their life.