Role of Liver Transplantation in Management of Hepatocellular Carcinoma

Essay

Submitted for Partial Fulfillment of Master Degree in **Internal Medicine**

Presented by

Atef Fahmy Ahmed Sallam

(M.B., B.Ch.) Mansoura University

Supervised by

Prof. Dr. Khaled Zakaria El Karmouty

Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine – Ain Shams University

Dr. Eslam Safwat Mohamed

Lecturer of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine – Ain Shams University

Dr. Ossama Ashraf Ahmed

Lecturer of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

LIST OF CONTENTS

Title	Page
♦ Introduction and Aim of the Work	1
• Review of the Literature:	
o Chapter 1: HCC an Overview	4
■ Epidemiology of HCC	4
Risk factors of HCC	9
■ Diagnosis of HCC	23
Staging of HCC	42
Screening of HCC	58
o Chapter 2: Treatment of HCC	64
o Chapter 3: Liver transplantation for HCC	84
o Chapter 4: Prognosis of HCC	115
♦ Summary and Conclusion	124
• References 129	
♦ Arabic Summary	

LIST OF TABLES

Tab. No	Title	Page
Table (1):	Frequency of Clinical Features of HCC	24
Table (2):	Child-Pugh classification	27
Table (3):	Interpretation of Child-Pugh classification	28
Table (4):	TNM Classification for Hepatocellular Carcinoma	43
Table (5):	Definitions Used in the CLIP Proposal	50
Table (6):	French classification system	51
Table (7):	The BCLC classification	54
Table (8):	Definitions in the JIS Score.	56
Table (9):	Classification of Physical Impairment of	
	Cancer Patients According to Performance	
	Status and Karnofsky Index	57

LIST OF FIGURES

Fig. No	Title	Page
Figure (1):	The incidence of HCCin different geographic regions	7
Figure (2):	BCLC staging classification and treatment schedule	53
Figure (3):	Diagnostic algorithm for suspected HCC according to new guideline of AASLD	63

Chapter 1

Hcc: An overview

-	Epidemiology	. 4
•	Risk Factors, Aetiology and Pathogenesis	.9
•	Diagnosis	. 23
•	Staging	. 42
	Screening	58

ACKNOWLEDGEMENT

First of all, I would like to Thank Allah who granted me the strength to accomplish this work.

I would like to express my gratefulness and respect to **Prof. Dr. Khaled Zakaria El Karmouty,** Professor of Internal Medicine, Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams University, for his moral and scientific support and for giving me the honor to be his student and to work under his supervision and valuable guidance.

Special thanks and deepest gratitude to **Dr. Eslam**Safwat Mohamed, Lecturer of Internal Medicine,
Gastroenterology and Hepatology, Faculty of Medicine, Ain
Shams University, for his constructive and instructive
comments and valuable suggestions.

I would like to thank **Dr. Ossama Ashraf Ahmed,** Lecturer of Internal Medicine, Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams University, for his supervision and encouragement throughout the practical part of this work.

My deepest gratitude I extend to my whole family who offered me support, advice and motivation.

LIST OF ABBREVIATIONS

AFB1	Aflatoxin B1
AFP	Alpha-fetoprotein
AFU	Alpha-L-fucosidase
ALT	Alanine transaminase
ATT	Alpha-1 antitrypsin
BCLC	Barcelona Clinic Liver Cancer
CA 125	Cancer antigen 125
CC	Cholangio carcinoma
CdK4	Cyclin dependent kinase
CDKs	Cyclin-dependent kinases
CHF	Chronic heart failure
CLIP	Cancer of the Liver Italian Program
CLT	Cadaveric liver transplantation
CsA	Cyclosporine
CT	Computed tomography
CUPI	Chinase university prognostic index
CYP 450	cytochrome P 450
DCP	Des-Y-carboxyl prothrombin
ELIZA	Enzyme linked immunosorbant assay
ES	Endostatin
EUS	Endoscopic ultrasonography
EUS-FNA	EUS-Fine Needle Aspiration
FDG	Fluorodeoxy glucose
FDG	Flurodeoxyglucose
FNA	Fine Needle Aspiration
GGT	Gamma-glutamyl transpeptidase
GGT II	Gamma-glutamyltransferase isoenzyme II
GPC3	Glypican-3

LIST OF ABBREVIATIONS (CONT.)

II maniani	TT 11 1
H pylori	Helicobacter pylori
HBeAg	Hepatitis B envelop antigen
HBsAg	Hepatitis B Surface Antigen
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCC/CC	Combined HCC and cholangiocellular carcinoma
HCCR	Human cervical cancer oncogene protein
HCV	Hepatitis C virus
HIF1	Hypoxia inducible factor 1
HSP	Heat shock protein
ICAM1	Intercellular adhesion molecule-1
IFN-a	Interferon a
IGF2R	Insulin-like growth factor 2 receptor
IGF-II	Insulin like growth factor II
IL-1	Interleukin 1
IL-6	Interleukin 6
INR	Internatioonal normalized ratiow
JIS	Japanese Integrated System
LCA	Lens culinaris agglutinin
LCSGJ	Liver cancer study group of japan
LDLT	Living donor liver transplantation
LOH	Loss of heterozygosity
LT	Liver transplantation
MDCT	Multiphase dynamic CT
MELD	Model for end-stage liver disease
MMP	Matrix metalloproteinases
MRI	Magnetic resonance imaging

LIST OF ABBREVIATIONS (CONT.)

MTOR	Mammalian target of Danamyoin
MVD	Mammalian target of Rapamycin
	Microvessel density
NASH	Non Alcoholic Steatohepatitis
NCLCCAA	National Committee on Liver Cancer of the Chinese Anti cancer Association
NHL	Non Hodgkin's lymphoma
NS3	Non Structural 3
OLT	Orthotopic liver transplantation
OPTN	Organ procurement transplantation network
P53	Protein 53
PAI-1	Plasminogen activator inhibitor-1
PBC	Primary billary cirrhosis
PCNA	Proliferating cell nuclear antigen
PDECGF	Platelet-derived endothelial cell growth factor
PEI	Percutaneous ethanol injection
PELD	Pediatric end-stage liver disease
PET	Positron emissioh tomography
PIAEI	Percutaneous Intra-arteriai Ethanol Injection
PIVKA-II	Prothrombin induced by vitamin K absence or antagonist II
PSC	Primary sclerosing cholangitis
PST	Performance status test
PT	Prothrompine time
RFA	Radiofrequency ablation
RTA	Relatives of telomerase activity
SRT	Stereotactic radiotherapy
SSTR	Somatostatin receptors
TACE	Transcatheter arterial chemoembolization

LIST OF ABBREVIATIONS (CONT.)

TGF	Transforming growth factor
TGFB	Transforming growth factor B
TNF	Tumor necrosis factor
TNF-a	Tumor necrosis factor-a
TNM	Tumor node metastasis
TP	Thymide phosphorylase
TP53	Tumor Protein p53
TSP	Thrompoplastin
UCLA	University of California and Los Angeles
UCSF	University of California and san Francisco
uPA	Urokinase plasminogen activator
uPAR	Urokinase plasminogen activator receptor
us	Ultrasound
VEGF	Vascular endothelial growth factor
vER	variant estrogen receptor
w/ER	Wild-type estrogen receptor
5 FU	5-fluorouracil

Introduction and Aim of the Work

Introduction:

Hepatocellular carcinoma (HCC) is an increasingly prevalent clinical problem worldwide and is the third most common cause of cancer-related death (Sanyal et al., 2010).

Most of HCC patients are asymptomatic and discoverd only during screening program for cirrhosis or liver transplantation (Abdel-Wahab et al., 2000).

A common presentation of HCC is sudden decompansation in a patient known to have cirrhosis such as ascites, encephalopathy, jaundice, or varicial bleeding (*Jema*, 2011)

Approximately 748,300 new cases of HCC were diagnosed in 2008, and 695,900 patients died of the disease; these statistics underline the high mortality rate of this type of cancer (Ferlay et al., 2008)

Early diagnosis and appropriate determination of extent of HCC and hepatic function are critical in optimizing treatment planning and improving survival rates advances in imaging techniques have improved the ability to carefully evaluate patients with HCC. Three important goals should be addressed when evaluating patients with HCC which are, confirmation of diagnosis,

assessment of hepatic functional reserve and staging of extent of disease (El-Serag et al., 2002).

The standard surgical management for patients with HCC consists of locoregional ablation, surgical resection, or liver transplantation, depending on the state of the liver. Eighty percent of patients initially presenting with HCC are unresectable, either due to the extent of tumor or the level of underlying hepatic dysfunction. While in patients with no evidence of cirrhosis and good hepatic function, resection has been the treatment of choice, it is contraindicated in patients with moderate to severe cirrhosis (Child class B or C), leaving these patients with liver transplantation as the only option (*Thomas et al.*, 2010).

Moreover, transplantation is the optimal treatment even for small, otherwise resectable HCC. This is a reflection of a number of factors. Liver transplantation is the most beneficial oncologic treatment, which most likely results in a resection with microscopically negative margins . Most HCCs are multifocal, arising from a "field defect" in the liver; though pre-neoplastic lesions may not be visible at time of operation, they are likely to continue to evolve into new primary HCCs. Furthermore, transplantation also eliminates cirrhosis and restores normal hepatic function. However, limited organ availability mandates the restriction of transplantation to only those patients with early stage tumors. Organ Procurement Transplant Network (OPTN) data confirm the evolution of liver transplantation from futile to the first choice therapy for selected patients (*Pelletier et al.*, 2009).

Aim of the Work

A trial to disclose the updates in diagnosis, treatment, prognosis and early survillance of hepatocellular carcinoma and to introduce liver transplantation as a treatment modality for this common problem in Egypt .

Epidemiology of HCC

Hepatocellular carcinoma (HCC) is an increasingly prevalent clinical problem worldwide and is the third most common cause of cancer-related death (Sanyal et al., 2010).

It is one of the most common solid tumors in the world and accounts for 500.000 deaths every year Also, HCC is the fifth most common cancer in men and it is the eighth in women worldwide (Parkin et al., 2005).

HCC significant public health problems, causes especially in association with chronic hepatitis B or C. The observation that half of HCC cases and deaths are estimated to occur in China indicates that hepatitis B virus (HBV) infection plays a major carcinogenic role in global HCC epidemiology (Ferlay et al., 2008). Moreover, the incidence of liver cancer is high not only in developing countries but has also been increasing among most racial and ethnic groups in developed countries, such as the United States, as a result of hepatitis C virus (HCV) infection and nonalcoholic steatohepatitis (NASH) (Ahmed et al., 2008).

HCC accounts for 70% to 85% of all cases of primary liver cancer except in some parts of Philippines and Thailand where intrahepatic cholangiocarcinoma is very common (McGlynn et al., 2001).

Unfortunately in Egypt HCC was the 2nd most frequent cancer for male after bladder and constituted 13% of all cancers for female it was the 4th after breast, NHL, and leukaemia and constituted 4.1% of all cancers (*El-Attar*, 2005).

HCC proportion has increased from 4% to 7.2% among chronic liver disease patients (*El-Zayadi et al.*, 2005).

Geographical Variation in Incidence:

Approximately 748,300 new cases of HCC were diagnosed in 2008, and 695,900 patients died of the disease; these statistics underline the high mortality rate of this type of cancer (Ferlay et al., 2008).

The frequency with which HCC occur varies in different region with high incidence are eastern and south eastern Asia and in most of Sub-Saharan Africa intermediate incidence occur in eastern and southern Europe, the Caribbean, central America and Western Asia (Kew, 2002).

The exact explanation of this variation is unknown but in general high incidence rates correlate strongly with the prevalence of HBV infection. For example, in china (very high incidence of HCC), the prevalence rate of HBV surface antigen carriers was between 10% and 20% (El-Serag et al., 2001).

The incidence of HCC largely varies according to the geographic area, although it is usually higher in developing