New Advances In Management of Septicemia In Burned patients

An Essay

Submitted for the partial fulfillment of master degree in critical care

Presented by

ASMAA MAGDY FAROUK

M.B.B.Ch Y. . V

Supervised by

Porf.Dr. / Raouf Ramzy Gad-alla

Prof. of anesthesia & intensive care Faculty of medicine, Ain-Shams university

Dr / Ahmed Mohamed Shafik

Assistant prof. of anesthesia & intensive care Faculty of medicine, Ain-Shams university

Dr / Ayman Ibrahim Tharwat

Lecturer of anesthesia & intensive care Faculty of medicine, Ain-Shams university

> Faculty of medicine Ain- Shams university

Contents

Title	Page
List of abbreviations	i
List of tables	iii
List of figures	iv
Introduction	1
Pathophysiology of septicemia in burned patients	4
Causetive agents of septicemia in burned patients	33
New advances in diagnosis of septicemia in burned patients	46
New advances in treatment of septicemia in burned patients	87
English summary	
References	155
Arabic summary	

Thanks Allah Almighty, the Gracious for blessing me with such a wonderful group of professors who instructed and guided me throughout my work.

I would like to express my sincere thanks to **Prof. Dr. Raouf Ramzy Gad Alla**, Professor of Anesthesiology, Faculty of Medicine – Ain Shams University, for his supervision, guidance, valuable advice, helpful directions and continuous interest throughout the whole work.

My thanks and gratefulness to **Dr. Ahmed**Mohamed Shafik, Assistant Professor of

Anesthesiology, Faculty of Medicine – Ain Shams

University, for his keen interest, beneficial advice and

constant support during the conduction of this work.

I also wish to offer my warmest and deepest appreciation to **Dr. Ayman Ibrahim Tharwat,**Lecturer of Anesthesiology, Faculty of Medicine –
Ain Shams University, for his unlimited, endless help and continuous encouragement.

List of abbreviation

ADH	Anti-diruetic hormone
ALI	Acute lung injury
APRV	Airway pressure release ventilation
аРТТ	activated partial thrombo-plastin time
ARDS	Acute respiratory distress syndrome
AT	Anti-thrombin
BSBA	Body surface burned area
BWI	Burn wound infection
DIC	Disseminated intra-vascular coagulopathy
EC s	The endothelial cells
GAGs	Glycol amino-glycans
HFOV	High frequency oscillatory ventilation
HSPGs	Endothelial heparin sulphate polysaccharides
IL-6	Interleukin – 6
LBP	Lipopoly-saccharide binding protein
MAP	Mean arterial pressure
MODS	Multi organ dysfunction syndrome
MOF	multiple organ failure
MPs	Micro-particles

MRSA	Methicillin resistant staph – aureus
NE	Norepinephrine
NO	Nitric oxide
PARs	Protease activated receptors
Pc	Protein C
PCT	Pro-calcitonin
PG	Proteoglycans
PT	Pro-thrombin time
SIRS	Systemic inflammatory response syndrome
TBSA	Total body surface area
TF	Tissue factor
TFPI	Tissue factor pathway inhibitor
TLR	Toll-like receptors
TNF	Tumour necrosis factor
TRICC	Transfusion requirement in critical care
TSST	Toxic shock syndrome toxin
VAP	Ventilator associated pneumonia
VILI	Ventilator induced lung injury
VP	Vasopressin

List of tables

Table NO.	Title	Page NO.
١	Lung injury score	0 £
۲	Histological description quantitative tissue cultures	٧١
٣	Formula of energy expenditure	144

List of Figures

Figure NO.	Title	Page
١	Wound areas in superficial and deep burn	٦
۲	Extensive crosstalk exists between coagulation and inflammation during sepsis, which is characeterized by inflammation—induced activation of coagulation with concurrent impairment of anticoagulation system, fibrinolysis and endothelial function. further more, during sepsis, inflammation—induced coagulation contributes to inflammation.	٩
٣	Proposed model for dys-regulation of neutrophil recruitment to bacterial infection in non-pulmonary tissue under normal conditions and in sepsis.	79
٤	Diagram of capillary cross section showing the events that occur in gram-positive sepsis and result in endothelial damage, coagulation abnormalities, and hemodynamic instability.	٤٠
٥	Schematized diagram of a gram-positive bacterium (specifically, B streptococcus) cell wall	٤٢
٦	Chest-X ray showing & o-year-old woman admitted to the intensive care unit with septic shock She subsequently developed acute respiratory distress syndrome (ARDS) and multi-organ failure	٥١

Introduction

Burn wound has a much higher incidence of sepsis as compared to other forms of trauma, because of extensive skin barrier disruption and an alteration in the cellular and humoral immune responses.

(Winkelstein, 1945)

Burn injury is known to cause devitalization of tissues and produce extensive raw areas. The wound is moist due to the outflow of serous exudates at a temperature approaching TV C or above . This moist wound environment favor colonization and proliferation of a variety of microorganisms. (*Lawrence*, 1997)

١

Dysfunction of the immune system, a large cutaneous bacterial load, the possibility of gastro-intestinal bacterial translocation, prolonged hospitalization and invasive diagnostic and therapeutic procedures, all contribute to sepsis. (*Jones et al.*, 199.)

The infecting organisms may gain access either through cross contamination or they may derive from the patient's own skin and gastrointestinal tract micro-flora (*Weber and McManus*, **··**) The survival rates for burn patients have improved substantially in the past few decades due to advances in modern medical care in specialized burn centers .(*Lionelli et al.*, **··•*)

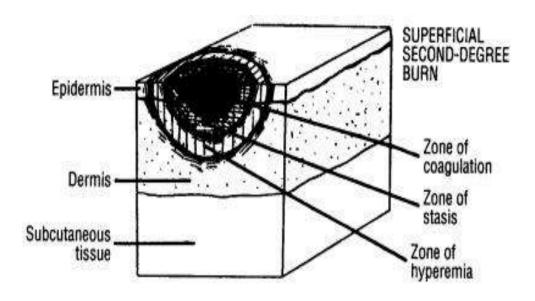
Improved outcomes for severly burned patients have been attributed to medical advances in fluid resuscitation, nutritional support, pulmonary care, burn wound care, and infection control practices.

(Roth and Hughes, **.**) Seventy five percent of all deaths are currently related to sepsis from burn wound infection or other infection complication and or sepsis due to inhalational injury.

(Atiyeh et al., **...)

Aim of the work

To discuss new causative agents , new strategies for diagnosis and treatment of septicemia in burned patients , aiming to improvement of outcome to reduce rate of morbidity and mortality .


Pathophysiology of sepsis in burned patients

Sepsis remains a critical and serious complication of a major burn injury with significant morbidity and mortality. Because burn causes a delay in epidermal maturation and leads to additional scar tissue formation (*Edwards and Harding*, **··**). Invasion of microorganisms into the tissue layers below the dermis may result in bacteremia, sepsis, and multiple-organ dysfunction syndrome. Clinical diagnosis of burn wound infection relies on regular monitoring of vital signs and inspection of the entire burn wound surface .(*Pruitt et al.*, 1994) Local signs of burn wound infection include conversion of a partial-thickness injury to a full-thickness wound, rapidly extending cellulitis of healthy tissue surrounding the injury, rapid eschar separation, and tissue necrosis.(*Robson*, 1944)

The burn wound typically has three characteristic areas of involvement

(i) the zone of coagulation, which comprises the dead tissues that form the burn eschar that is located at the center of the wound nearest to the heat source. (ii) the zone of stasis, which comprises tissues adjacent to the area of burn necrosis that is still viable but at risk for ongoing ischemic damage due to decreased perfusion.

The burn wound surface (in deep partial-thickness and in all full-thickness burns) is a protein-rich environment consisting of a vascular necrotic tissue (eschar) that provides a favorable niche for microbial colonization and proliferation. The a vascularity of the eschar results in impaired migration of host immune cells and restricts delivery of systemically administered antimicrobial agents to the area, while toxic substances released by eschar tissue impair local host immune responses. (*Erol et al.*, **••**)

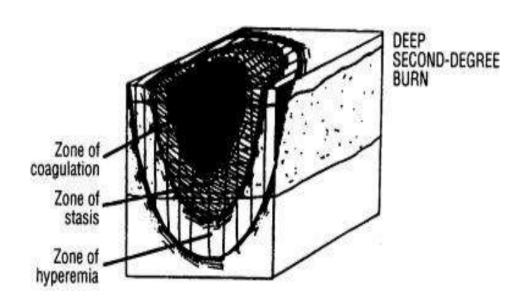


Figure (): wound areas in superficial and deep burn

(Roth and Hughes, *****)

Although burn wound surfaces are sterile immediately following thermal injury, Gram-positive bacteria that survive the thermal insult, such as staphylococci located deep within sweat glands and hair follicles, heavily colonize the wound surface within the first [£] h unless topical antimicrobial agents are used . (*Altoparlak et al.*, [†] · · [£])

Sepsis is widely recognized as a clinical syndrome, resulting from an overwhelming, systemic host response to infection. (*Annane et al.*, *\(\mathbf{r} \cdot \mathbf{o}'\)\) The key clinical manifestations of sepsis are not caused directly by the invading pathogens; rather, the hypotension, coagulopathy, and multisystem organ dysfunction that characterize severe sepsis are predominantly a result of dys-regulation of host-derived mediators of inflammation. Sepsis is the most common cause of death among hospitalized patients in non-cardiac intensive care units. In the last years, tremendous progress has been made in understanding the complex triad of infection, inflammation, and coagulation during sepsis. (*Angus et al.*, *\(\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \)