

"Physiological and Comparative Studies of Pollution on Some Plants Grown at the Road Side Locations Between Al- Kobba and Al-Obour Area, Egypt"

A THESIS SUBMITTED FOR PH.D. DEGREE IN SCIENCE TEACHER'S PREPARATION (BOTANY)

BY RANIA SAMY HANAFY AMIN

SUPERVISED BY Dr. Amin Erfan Dowidar

Professor of Plant Physiology Faculty of Education-Ain Shams University

Dr. Laila Mohammed Zaky

Professor of Plant Physiology Faculty of Education-Ain Shams University

Dr. Ali Abdel-Aziz Abdallah El-Mashad

Associate Professor of Plant Physiology Faculty of Education-Ain Shams University

Dr. Abdel Haleem Mohammed Ahmed Mohammed

Associate Professor of Plant Physiology Faculty of Education-Ain Shams University

كلية التربية قسم العلوم البيولوجية و الجيولوجية

"دراسات فسيولوجية ومقارنة للتلوث على بعض النباتات المنزرعة في مواقع على جانبي الطريق بين منطقتي القبة والعبور،مصر"

رساله مقدمه

العمول على حرجة حكتوراة الغلسغة لإعداد المعلو في العلوم (تخص نبائه)

من

رانيا سامى حنفى أمين

تحت اشراف

أ.د./ ليلى محمد زكى أستاذ فسيولوجيا النبات المتفرغ كلية التربية - جامعة عين شمس

أ.د./ أمين مرفان دويدار أستاذ فسيولوجيا النبات غير المتفرغ كلية التربية - جامعة عين شمس

ح. عود العليم محمد أحمد محمد أستاذ فسيولوجيا النبات المساعد
 كلية التربية – جامعة عين شمس

ح. على عود العزيز عود الله المشد
 أستاذ فسيولوجيا النبات المساعد
 كلية التربية – جامعة عين شمس

Title	Page
• LIST OF TABLES.	I
• LIST OF FIGURES.	III
• INTRODUCTION.	1
* Using of Higher Plants as Bioindicators.	3
* Accumulation of Heavy Metals in Plants.	4
- Lead (Pb)	6
- Cadmium (Cd)	7
- Zinc (Zn)	9
- Manganese (Mn)	9
* Accumulation of Heavy Metals in Soil.	10
- Lead (Pb)	11
- Cadmium (Cd)	13
- Zinc (Zn)	15
- Manganese (Mn)	16
* Effect of Heavy Metals on Ions Uptake.	17
* Effect of Acidity on Soil and Plants.	18
* The Reactive Oxygen Species (ROS).	20
- Superoxide Radical (O ⁻ ₂)	22
- Singlet Oxygen (¹ O ₂)	23
- Hydrogen peroxide (H ₂ O ₂)	25
- Hydroxyl radical (OH ⁻)	26
- Lipid Peroxidation.	27
* Antioxidant Enzymes.	29
- Superoxide dismutase (SOD)	30
- Catalase (CAT)	31
- Peroxidase (POD)	31

Title	Page
- Ascorbate peroxidase (APX)	32
* Effect of Heavy Metals on Plants.	33
* Morphological Characteristics.	35
*Photosynthetic Pigments.	37
* Anthocyanin Pigments.	43
* Protein and Nitrogen Contents.	44
* Carbohydrate Contents.	45
* Total Phenol Contents.	46
* Proline Contents.	47
* Plasma Membrane and Lipid Peroxidation.	48
* Effect of heavy metals on Antioxidative Enzymes.	49
* Effect of Heavy Metals on Non-Enzymatic	53
Antioxidants.	
- Glutathione (GSH)	53
- Ascorbic acid (ASA)	54
- α- Tocopherols	60
* The Plant Hormone Abscisic Acid (ABA).	60
 MATERIALS AND METHODS 	64
* MATERIALS	64
* Estimation of Minerals Concentration.	66
- Method of extraction and determination of total	66
cations	
- Method of extraction and determination of	67
inorganic phosphorus	
Method of extraction and determination of	69
Total sulphate	
* Estimation of Minerals Concentration in soil.	69
* pH of Soil.	70
* Scanning Electron Microscope Determination.	70
* Chemical Analysis of Plant Leaves.	70

······

Title Page * Growth measurements. **70** - Plant water content 70 - Area of leaves 71 * Extraction and Estimation of Photosynthetic 71 Pigments. * Extraction and Estimation of Anthocyanin Content. **72** * Extraction and Estimation of Total Protein. 72 72 - Extraction - Estimation **73** - Preparation of Nessler Solution **73** * Estimation of Carbohydrates Constituents. **73** - Extraction **74** - Estimation of direct reducing value (D.R.V.) **76** - Procedures **76** - Estimation of reducing value after sucrose 77 hydrolysis (T.R.V.) - Determination of Total Carbohydrates. 77 * Determination of Total Phenol. **78** * Estimation of Proline Content. 81 - Extraction 81 - Estimation 81 * Determination of Lipid Peroxidation. 81 * Estimation of the Activities of Antioxidant 83 Enzymes. - Extraction 83

- Determination of superoxide dismutase (SOD) 83 Activity - Determination of catalase (CAT) activity 84 - Determination of peroxidase (POD) activity 84 - Determination of ascorbate peroxidase (APX) 84 Activity

Title Page * Estimation of the Activities of Antioxidant 85 Compounds. - Extraction and estimation of glutathione (Non-85 Protein SH - Groups) - Extraction and Estimation of Ascorbic Acid 85 (ASA) - Extraction 85 - Estimation 85 - Extraction and estimation of α - tocopherol 87 * Extraction and Estimation of Abscisic Acid 90 (ABA). - Extraction 90 - Estimation 90 • EXPERITMENTAL RESULTS. 91 * Heavy Metals Accumulation in Leaves and in Dust on the Surface of Leaves of The Selected 91 Plants. - Lead (Pb) accumulation 92 - Cadmium (Cd) accumulation 92 - Zinc (Zn) accumulation 93 93 - Manganese (Mn) accumulation * Heavy Metals Accumulation in Soils. 100 - Lead (Pb) accumulation 100 - Cadmium (Cd) accumulation 101 - Zinc (Zn) accumulation 101 - Manganese (Mn) accumulation 101 * Mineral Ions Contents in Leaves of Selected Plants. 104 * Mineral Ions Contents in Soil. 104 * pH of Soil. 110 - Terminology of scanning electron microscope 110 (SEM) features of epidermal cells

Title	Page
Dodonaea viscose	110
Bougainvillea spectabilis	111
Ficus nitida	111
* Changes in Plant Growth and Metabolism in Leaves of Plant during the Summer and the Winter Seasons in Response to Air Pollution.	113
* Growth Parameters.	113
- Fresh and dry weights of leaves	113
- % of water content	113
- Area of leaves	113
* Photosynthetic Pigments.	117
- Chlorophyll a & b	117
- Carotenoids	117
- Total pigments	117
* Anthocyanin Contents.	121
* Total Protein Contents.	121
* Carbohydrate Contents.	124
- Reducing sugars	124
- Non-reducing sugars	124
- Total carbohydrates	124
* Phenolic Compound Contents.	127
* Proline Contents.	127
* Lipid Peroxidation.	130
* Antioxidant Enzymes Activities.	130
- Superoxide- dismutase (SOD) activity	130
- Catalase (CAT) activity	131
- Peroxidase (POD)	131
- Ascorbate peroxidase (APX)	131
* Antioxidant Substances.	135
- Glutathione (GSH) content	135

 Title
 Page

 - Ascorbic acid (ASA) content
 135

 - α-Tocopherol (Vitamine E) contents
 136

 * Abscisic Acid (ABA) Content.
 136

 • DISCUSSION AND CONCLUSION
 140

 • ENGLISH SUMMARY
 174

 • REFERENCES
 178

 • ARABIC SUMMARY

LIST OF FIGURES III

LIST OF FIGURES

No.	Title	Page
1	Production of superoxide radical and singlet oxygen in chloroplast at the site of PSI and PSII.	25
2	Synthesis and degradation of L-ascorbic acid in plant tissues.	56
3	The ascorbate-glutathione pathway operating mainly in chloroplast to detoxify H ₂ O (From Sharma and Davies, 1997).	59
4	Standard curve of total nitrogen	75
5	Standard curve of glucose	79
6	Standard curve of total phenol	80
7	Standard curve of proline	82
8	Standard curve of glutathione	86
9	Standard curve of ascorbic acid	88
10	Standard curve of α-tocopherol	89
11-a	The concentrations of heavy metals (Pb and Cd) (mgkg ⁻¹) in leaves of airborne contaminated plants in selected areas during the summer and the winter seasons.	95
11-b	The concentrations of heavy metals (Zn and Mn) (mgkg ⁻¹) in leaves of airborne contaminated plants in selected areas during the summer and the winter seasons.	96
12-a	The concentrations of heavy in airborne (mgL ⁻¹) of dust on the surface of leaves of plants in selected areas during the summer and the winter seasons.	98

LIST OF FIGURES IV

No.	Title	Page
12-b	The concentrations of heavy in airborne (mg L ⁻¹) of dust on the surface of leaves of plants in selected areas during the summer and the winter seasons.	99
13	The concentrations of heavy metals (mgL ⁻¹) in the soils of selected areas in the summer and the winter seasons.	103
14-a	The concentrations of mineral ions (mgkg ⁻¹) in leaves of plants in selected areas during the summer season.	106
14-b	Changes in the amount of mineral ions (mgkg ⁻¹) in leaves of plants in selected areas during the winter seasons.	107
15	Changes in the amount of mineral ions (mgL ⁻¹) in soils of selected areas during the summer and the winter seasons.	109
16	Scanning electron microscopy of <i>Dodonaea viscose</i> , <i>Bougainvillea spectabilis</i> and <i>Ficus nitida</i> leaves.	112
17-a	Effect of heavy metals of air pollution on the fresh and dry matter (g/ 10 leaves) of plants in selected areas during the summer and the winter seasons.	115
17-b	Effect of heavy metals of air pollution on % of water content and area of leaves (cm²/ 10 leaves) of plants in selected areas during the summer and the winter seasons.	116

LIST OF FIGURES V

No.	Title	Page
18-a	Effect of heavy metals of air pollution on photosynthetic pigments (chlorophyll a and chlorophyll b) (mg/g fresh matter) in leaves of plants in selected areas during the summer and the winter seasons	119
18-b	Effect of heavy metals of air pollution on photosynthetic pigments (carotenoids and total pigments) (mg/g fresh matter) in leaves of plants in selected areas during the summer and the winterseasons.	120
19	Effect of heavy metals of air pollution on anthocyanin content (mg/g fresh matter) and total nitrogen content (mg/g dry matter) in leaves of plants in selected areas during the summer and the winter seasons.	123
20	Effect of heavy metals of air pollution on reducing, non-reducing sugars and total carbohydrates (mg/g dry matter) in leaves of plants in selected areas during the summer and the winter seasons.	126
21	Effect of heavy metals of air pollution on phenolic compounds content (mg/g fresh matter), proline (Pro) content (mg/g fresh matter) and malondialdehyde (MDA) content (µmol/g fresh matter) in leaves of plants in selected areas during the summer and the winter seasons.	129
22-a	Effect of heavy metals of air pollution on enzymes activities in leaves of plants in selected areas during the summer and the winter seasons.	133

LIST OF FIGURES VI

No.	Title	Page
22-b	Effect of heavy metals of air pollution on enzymes activities in leaves of plants in selected areas during the summer and the winter seasons.	134
23	Effect of heavy metals of air pollution on glutathione (GSH) content (µmol/g fresh matter), ascorbic acid (ASA) content (mg/g dry matter) and tocopherols (vitamine E) content (IU / 100g) in leaves of plants in selected areas during the summer and the winter seasons	138

LIST OF TABLES

No.	Title	Page
1	The concentrations of heavy metals (mgkg ⁻¹) in leaves of airborne contaminated plants in selected areas during the summer and the winter seasons.	94
2	The concentrations of heavy in airborne (mg L¹)of dust on the surface of leaves of plants in selected areas during the summer and the winter seasons	97
3	The concentrations of heavy metals (mgL ⁻¹) in the soils of selected areas in the summer and the winter seasons.	102
4	The concentrations of minerals (mgkg ⁻¹) in leaves of plants in selected areas during summer and winter seasons.	105
5	The concentrations of mineral ions (mgL ⁻¹) and pH value in soils of selected areas at summer and winter seasons.	108
6	Effect of heavy metals of air pollution on the fresh and dry matter (g/ 10 leaves), % of water content and area of leaves (cm²/ 10 leaves) of plants in selected areas during the summer and the winter seasons.	114
7	Effect of heavy metals of air pollution on photosynthetic pigments (mg/g fresh matter) in leaves of plants in selected areas during the summer and the winter seasons.	118

No.	Title	Page
8	Effect of heavy metals of air pollution on anthocyanin content (mg/g fresh matter) and total protein content (mg/g dry matter) in leaves of plants in selected areas during the summer and the winter seasons.	122
9	Effect of heavy metals of air pollution on reducing, non-reducing sugars and total carbohydrates (mg/g dry matter) in leaves of plants in selected areas during the summer and the winter seasons.	125
10	Effect of heavy metals of air pollution on phenolic compounds content (mg/g fresh matter), proline (Pro) content (mg/g fresh matter) and malondialdehyde (MDA) content (µmol/g fresh matter) in leaves of plants in selected areas during the summer and the winter seasons.	128
11	Effect of heavy metals of air pollution on enzymes activities in leaves of plants in selected areas at the summer and the winter seasons.	132
12	Effect of heavy metals of air pollution on glutathione (GSH) content (μ mol/g fresh matter), ascorbic acid (ASA) content (mg/g dry matter) and α -tocopherols (vitamine E) content (IU / 100 g fresh matter) in leaves of plants in selected areas during the summer and the winter seasons.	137
13	Changes in the amount of abscisic acid $(\mu g/100g)$ in leaves of plants in selected areas during the summer and the winter seasons.	139

......

INTRODUCTION (1)

INTRODUCTION

Pollution of the environment is one of the most effective factors in the destruction of the biosphere components. Air pollution may be defined as the presence in the outdoor atmosphere of one or more contaminants or combinations that are injurious to human, plant or animal life or which unreasonably interferes with comfortable enjoyment of life or the conduct of business. Air pollution represents a serious problem in most of urban areas of the world that is injurious to human, plant or animal life.

Air pollution sources may be divided into two broad categories, natural and man- made. 1-Natural sources: include wind blown dust, volcanic ash and gases ozone from lightning and from ozone layer, ester and terpenes from vegetation, smoke- gases and fly ash from forest fire, pollen and aeroallergens and natural radioactivity. 2- Man-made sources cover wide spectrum of chemical and physical activities. These are mainly combustion processes (**Abdel-Aziz**, **2001**).

Huhn et al. (1995) and Harrison and Jones (1995) confirmed that analysis of urban anthropogenic particulates has shown them to be enriched in a range of potentially toxic trace metals, including Fe, Pb, Zn, Ba, Mn, Cd and Cr. Accumulation of metals in the environment has greatly increased in the past decade since large quantities of pollutants are released annually into the atmosphere.