Estimate of the pattern and prevalence of alterations of glucose metabolism in diabetic and non-diabetic HCV cirrhotic patients

Thesis

Submitted for partial fulfillment of master degree in Tropical medicine

By

Dr. Khaled Mahmoud Torab

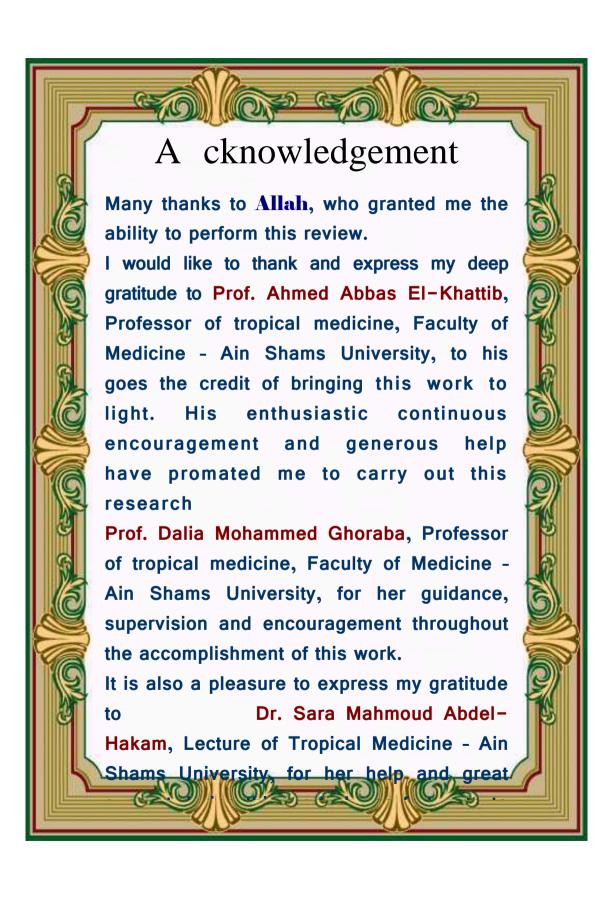
M.B.B.Ch

Supervised by

Prof. Dr. Ahmad Abbas El-Khattib

Professor of Tropical medicine Faculty of medicine Ain Shams University

Dr. Dalia Mohammad Ghoraba


Lecturer of Tropical medicine Faculty of medicine Ain Shams University

Dr.Sara Mahmoud Abdel-Hakam

Lecturer of Tropical medicine Faculty of medicine Ain Shams University

> Faculty of medicine Ain Shams University 2013

I would like to express my deep thanks and gratitude to all members in My Family for supporting me and pushing me forward all the time.

List of Figures

Figure No.	Title	Page No.
	<u>D.M.:</u>	
Figure (1):	Dual feedback connection between plasma	<i>C</i> 1
	glucose and insulin concentrations in vivo:	64
	(+), Stimulation; (-), inhibition.	
Figure (2):	Causes of hyperglycemia and sites of action	70
	of oral antidiabetic agents.	72
	HCV & T2DM:	
	Molecules which are likely to be involved in	01
Figure (1):	mediating insulin resistance (IR) in HCV	91
_	infection.	
	<u>Results</u>	
Figure (1):	Comparison of sex among studied groups	99
Figure (2):	Comparison of BMI among studied groups	100
Figure (3):	Comparison of WBCs among studied groups	101
Figure (4):	Comparison of Albumin among studied groups	102
Figure (5):	Comparison of Urea among studied groups	103
Figure (6):	Comparison of Fasting Blood Glucose among	104
	studied groups	104
Figure (7):	Comparison of 2 Hours Post Prandial Blood	105
	Sugar among studied groups	105
Figure (8):	Comparison of HbA1C Before treatment (%)	106
	among studied groups	100
Figure	Comparison of qualitative SVR after treatment	108

List of Tables

Table No.	Title	Page No.	
Table (1):	HCV:		
	Modified Child-Pugh Score	11	
Table (2):	Contraindications to Treatment of HCV	22	
	Infection with IPnterferon and Ribavirin.	23	
Table (3):	Side effects for Pegylated interferon.	24	
	D. M.:		
Table (1):	Comparison between monogenic and	50	
	polygenic (complex) forms of T2DM.		
Table (2):	Criteria for the Diagnosis of Diabetes Mellitus	66	
1 able (2).	and Impaired Glucose Homeostasis.	00	
Table (3):	Dose-Response of Oral Agents for Type 2	71	
Table (b).	Diabetes Mellitus.	71	
Table (4):	Goals of Therapy for Patients with Diabetes	71	
14010 (4).	Mellitus.	71	
	<u>HCV & T2DM:</u>		
Table (1):	Clinical evidence for a steatogenic effect for	77	
rable (1).	genotype 3.		
	Tables of the Results:		
Table (1):	Comparison of age (years) between studied	98	
	groups		
Table (2):	Comparison of gendre between studied groups.	99	
Table (3):	Comparison of BMI (kg/m²) between studied	99	
14010 (5).	groups		
Table (4):	Comparison of Blood picture between studied	101	
	groups	101	
Table (5):	Comparison of liver function tests between	102	
	studied groups		

Table No.	Title	Page No.
Table (6):	Comparison of urea (mg/dL) between studied groups	103
Table (7):	Comparison of creatinine (mg/dL) between studied groups	103
Table (8):	Comparison of fasting blood glucose (mg/dL) between studied groups	104
Table (9):	Comparison of 2 hours post prandial blood sugar (mg/dL) between studied groups	104
Table (10):	Comparison of HbA1c (%)between studied groups	106
Table (11):	Comparison of insuline between studied groups	107
Table (12):	Comparison of HOMA-IR between studied groups	107
Table (13):	Comparison of C-peptide (ng/dL) between studied groups	107
Table (14):	3hours OGTT between non diabetic group	107
Table (15):	Comparison of PCR (x 103 copy /mL) between studied groups	108

List of Contents

Tiltle	
Aim of the work	
Review of Literature	
Hepatitis C virus	5
Diabetes Mellitus	44
Hepatitis C virus and Diabetes Mellitus	74
Patients and Methods	
Results	
Discussion	
Summary and Conclusion	
Recommendation	
References	
Arabic Summary	

List of Abbreviations

Abbrev.	Meaning
AVH	Acute viral hepatitis
ALT	ALanine amino-Transferase
AST	ASpartate amino-transferase
AFP	Alpha Feto Protein.
ASB	Asymptomatic Bacteriuria
Akt	The serine/threonine kinase Akt or protein
	kinase B (PKB) is a downstream effector of
	phosphatidylinositol 3 (PI 3)-kinase. It was
	shown to be the mediator of growth factor-
	dependent cell survival in a variety of cell types.
BMI	Body Mass Index
BP	Blood Pressure
CMV	Cytomegalovirus.
CTL	Cytotoxic T Lymphocyte.
DIE	Diabetes In Egypt
DM	Diabetes Mellitus
EIAs	Enzyme Immunoassays
ESRD	End Stage Renal Disease
EVR	Early Viral Response
GADA	Glutamic Acid Decarboxylase Antibodies
GGT	Gamma-Glutamyl-Transpeptidase
GLP	Glucagons-Like Peptide
GM-CSF	Granulocyte/Monocyte Colony Stimulating
	Factor
HBc	Hepatitis B core.
HbsAg	Hepatitis B surface Antigen.
HBV	Hepatitis B Virus
HCC	Hepatocellular Carcinoma.
HCV	Hepatitis C Virus
HDL	High Denisty Lipoprotein

Abbrev.	Meaning
HIV	Human Immunodeficiency Virus
HNF-4¤	Hepatic Nuclear Factor-4¤.
HRQOL	Health-Related Quality Of Life.
HOMA IR	Homeostasis Model Assessment for Insulin
	Resistance
ICA	Islet Cell Antibody
IDDM	Insulin-Dependent Diabetes Mellitus
IFG	Impaired Fasting Glucose
IFN	Interferon
IGFBP-1	Insulin-Like Growth Factor-Binding Protein-
IGT	Impaired Glucose Tolerance
IL	Interleukin
IPF-1	Insulin Promoter Factor-1
IR	Insulin Receptor.
IRES	Internal Ribosome Entry Site
IRS	Insulin Receptor Substrate
IRS-1	Insulin Receptor Substrate-1
IRS-2	Insulin Receptor Substrate-2.
Ire	Insulin Resistance
JNC	Joint National Committee
LADA	Latent Autoimmune Diabetes of the Adult
LADY	Latent Autoimmune Diabetes in Youth
LFA	Lymphocyte Function-associated Antigen
MODY	Maturity-Onset Diabetes in Youth.
MPG	Membrano-Proliferative Glomerulonephritis
NAC	N-Acetyl Cysteine
NASH	Non-Alcoholic Steatohepatitis
NAT	Nucleic Acid Amplification Technology
NCR	Non-Coding Gene
NHANES III	The Third National Health and Nutrition
	Examination Survey.
NHL	Non Hodgkin's Lymphoma
NIDDM	Non Insulin-Dependent Diabetes Mellitus

Abbrev.	Meaning
NK	Natural Killer
NSAIDs	Non Steroidal Anti-Inflammatory Drugs
OGTT	Oral Glucose Tolerance Test
PAT	Parenteral Antischistosomal Therapy
PCR	Polymerase Chain Reaction
PEG-IFN=PegIFN	Pegylated Interferon
PEPCK	Phosphoenolpyruvate Carboxykinase
PI	Pro-Insulin
PI3K	Phosphatidylinositol 3-kinase.
2hrPPG	Two-hour Postprandial Plasma Glucose
PTDM	Posttransplantation Diabetes Mellitus.
RBV	Ribavirin
ROM	Reactive Oxygen Metabolites
ROS	Reactive Oxygen Species
RT-PCR	Reverse Transcriptase Polymerase Chain
	Reaction
SBP	Systolic Blood Pressure
SCD4	stearoyl coenzyme A desaturase 4
SREBP-1	Sterol Regulatory Element Binding Protein-1c
STAT-3	Signal Transducer and Activator of
	Transcription 3
SOC	Suppressor of Cytokine signaling
SST	Sho-Saiko-To.
SVR	Sustained Virological Response
T1DM	Type 1 Diabetes Mellitus=IDDM
T2DM	Type 2 Diabetes Mellitus= NIDDM
TGF-β	Transforming Growth Factor-beta
TIW	Three Times per Week
TT	Triple Therapy.
WHO	World Health Organization
UDCA	UrsoDeoxyCholicAcid.

INTRODUCTION

Hepatitis C virus (HCV) is considered the most common etiology of chronic liver disease (CLD) in Egypt, where prevalence of antibodies to HCV (anti-HCV) is approximately 10-fold greater than in the United States and Europe (*Strickland*, *et al.*, *2002*). Egypt has the highest worldwide prevalence of HCV (10-20%) (*Ray et al.*, *2000 and Kamal & Nasser*, *2008*).

The majority of infected individuals (60-80%) develop chronic hepatitis C (CHC), which is associated with progressive liver fibrosis and a 3-9% risk of cirrhosis after 20 years (*Freeman et al.*, 2001). CHC is also associated with significant morbidity and mortality, accounting for 50-76% of all liver cancer cases worldwide, and two thirds of liver transplants in the developed world (*WHO*, 2008).

Strickland in (2006) reported that, in Egypt, schistosomiasis was traditionally the most important public health problem and infection with Schistosoma mansoni is the major cause of liver disease.

It is now widely recognized that CHC is associated with insulin resistance (IR) and type 2 diabetes (T2DM), so can be considered a metabolic disease. Apart from the well-described complications of diabetes, IR in CHC predicts faster progression to fibrosis and cirrhosis that may end in liver failure and hepatocellular carcinoma (HCC). More recently, it has been recognized that IR in CHC predicts a poor response to antiviral therapy (Douglas and George, 2009).

A previous study of cirrhotic patients confirmed that T2DM was present in 21% of patients with cirrhosis due to CHC. Significantly, subsequent case control studies have confirmed that T2DM is associated with CHC even in the absence of cirrhosis (Knobler et al., 2000 and Antonelli et al., 2005).

Of relevance, it has been previously reported that there was no association between CHC and type 1 diabetes, and no association of hepatitis B virus infection with T2DM, suggesting a virus-specific association of HCV with T2DM (Douglas and George, 2009). It was also noted that HCV-associated T2DM mainly occurred in patients with other risk factors for diabetes, such as older age and a high body mass index (Mehta et al., 2003).

Insulin resistance is present in > 90% of individuals before the onset of frank T2DM. The homeostasis model of insulin resistance (HOMA-IR) was used to diagnose IR, calculated by the following equation: HOMA-IR = fasting glucose (mg/dL) × fasting insulin (μU/mL)/405 (Matthews et al., 1985). Typically, a HOMA-IR value > 2 is used as a significant indicator of IR (Douglas and George, 2009).

Hui et al. (2003) first reported that IR is increased in patients infected with HCV, particularly genotype 1. Subsequent studies have confirmed this association for genotype 4 (*Moucari et al.*, 2008) and possibly also genotype 2a (*Negro*, 2006).

The mechanisms of HCV-induced IR occur through increased levels of interleukin (IL)-1, tumor necrosis factor (TNF)-, IL-6 and leptin, and reduced levels of adiponectin (*Bugianesi et al.*, 2005).

Aim of the study

The aim of the present study is to estimate the pattern and prevalence of glucose intolerance and alterations of glucose metabolism in diabetic and non-diabetic HCV cirrhotic patients