A COMPARITVE STUDY OF COMBINED GENERAL ANESTHESIA WITH LUMBAR PLEXUS BLOCK VERSUS COMBINED GENERAL AND EPIDURAL ANESTHESIA IN PATIENTS UNDERGOING HIP REPLACEMENT SURGERIES

Thesis Submitted for Partial Fulfillment of M.D. Degree in Anesthesiology

Presented By:

Mohamed Mourad Mohsen Mohamed Ali

M.B.B.CH- M.SC in anesthesiology

Faculty of Medicine - Ain Shams University

Supervised By: Prof. Dr.Hussein Hassan Sabri

Professor of Anesthesiology and Intensive care Faculty of Medicine-Ain Shams University

Prof. Dr. Mohamed Saeed Abd-Alaziz

Professor of Anesthesiology and Intensive care Faculty of Medicine-Ain Shams University

Dr. Ehab Hamed Abd-Alsalam

Assistant Professor of Anesthesiology and Intensive care Faculty of Medicine-Ain Shams University

Dr. Hanna Mohamed Abd-Allah Elgendy

Lecturer of Anesthesiology and Intensive care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

بِشِهُ اللَّهُ اللَّاللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ ال

وقُلِ اعْمَلُوا فَسَيَرَى اللهُ عَمَلَكُمْ وَقُلِ اعْمَلُوا فَسَيَرَى اللهُ عَمَلَكُمْ ورَسُولُهُ والمُؤْمِنُونَ

صدق الله العظيم

سورة التوبة آية (105)

First of all, all gratitude is due to ALLAH for blessing this piece of work, until it has reached its end, as a part of His generous support throughout my life.

I can hardly find the words to express my gratitude to **Professor Dr. Hussein Hassan Sabri**, Professor of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his close supervision, continuous help and encouragement throughout the whole work.

I'm also deeply indebted to **Professor Dr. Mohamed Saeed Abd-Alaziz**, professor of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his guidance, continuous assistance, tremendous help and close supervision.

I'm also indebted to **Dr. Ehab Hamed Abd-Alsalam**, Assistant Professor of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his great effort, guidance and precious advices. That's beside his continuous support.

I'm also deeply indebted to **Dr. Hanna Mohamed Abd-Allah Elgendy**, lecturer of anesthesia and intensive care, faculty of medicine, Ain Shams University, for her great effort, guidance and precious advices.

It has been a great honour working under their guidance and supervision.

Contents

Content	Page
Introduction	1
Review of Literature	
Chapter 1: Pain Pathway	4
Chapter 2: Pharmacology of Local Anesthetics	16
Chapter 3: Anatomical Considerations	32
Chapter 4: Techniques of lumbar plexus block.	41
Chapter 5: Complications	51
Chapter 6: anatomy of the epidural space	59
Aim of Work	85
Patients and methods	86
Results	94
Discussion.	107
Conclusion.	120
Summary	121
References.	123
Arabic Summary	1

List of Abbreviations

Abb.	Stands for
%	Percent
γ	Gamma
δ	Delta
К	Kappa
<	Less than
>	More than
0	Degree
μ	Mue/Micron
μg	microgram
AS	Ankylosing Spondylitis
ASA	American Society of Anesthesiologists
BA	Bronchial Asthma
bpm	Beats per minute
BS	Buffered saline
C_{1-8}	Cervical spinal roots
Ca ⁺⁺	Calcium
CGRP	Calcitonin Gene-Related Peptide
cm	Centimeter
CNS	Central Nervous System
Co	Coccygeal
-COO	Ester linkage
CSF	Cerebrospinal fluid
CT scan	Computerized tomography scan
DBP	Diastolic Blood Pressure
DM	Diabetes mellitus

Abb.	Stands for
DRG	Dorsal Root Ganglion
Е	Enkephalinergic interneurons
ECG	Electrocardiogram
ed.	Edition
EDTA	Ethylene-Di-Amin-Tetra-acetic Acid
ELISA	Enzyme-Linked Immunosorbent Assay
ENS	Electric Nerve Stimulation
ESR	Erythrocyte sedimentation rate
et al.	And colleagues
FDA	Food and Drug Administration
Fig	Figure
G	Gauge
GABA	Gamma Amino Butyric Acid
Gi	G-Inhibitory protein
hr	Hour
HR	Heart Rate
hrs	hours
HS	Highly significant
HTN	Hypertension
Hz	Hertz
I.M	Intramuscular
I.V	Intravenous
ICP	Intra cranial pressure
IDVA	Intravenous drug abuse
J.	Journal
K^{+}	Potassium
Kg	Kilogram

Abb.	Stands for
L ₁₋₅	Lumbar spinal roots
LAs	Local Anesthetics
LC	locus coeruleus
LOR	loss of resistance
mA	milliamperes
MABP	Mean Arterial Blood Pressure
mg	milligram
min	Minute
ml	milliliter
mm	millimeter
mmHg	Millimeters of Mercury
MRI	Magnetic Resonance Imaging
N	Neuron
Na ⁺	Sodium
-NHCO	Amide linkage
NMDA	N-Methyl-D-Aspartate
NS	Non-significant
NSAIDs	Non steroidal anti-inflammatory drugs
P	Probability value
PABA	Para-AminoBenzoic Acid
PAG	Peri-Aqueductal Gray
PCA	Patient Controlled Analgesia
PCB	Psoas Compartment Block
PDPH	Postdural Puncture Headache
PGs	Prostaglandins
PLA ₂	Phospholipase A2
PNBs	Peripheral Nerve Blocks

Abb.	Stands for
pp	Pages
RA	Rheumatoid Arthritis
RHD	Rheumatic Heart Diseases
RR	Respiratory Rate
RSS	Ramsy Sedation Score
S	Stereoisomer
SD	Standard Deviation
Sig.	Significance
SpO ₂	Peripheral Oxygen Saturation
T ₁₋₁₂	Thoracic spinal roots
THA	Total Hip Arthroplasty
VAS	Visual Analogue Scale
Vol.	Volume
Vs.	Versus
X^2	Chi-Square
α	Alpha
β	Beta

List of Figures

Chapter	Fig no.	Illustrates	Page
1	1	Dorsal horn laminae	7
	2	Rostral projections of nociceptive progression	9
	3	Original gate control theory of pain modulation	10
	4	Supraspinal modulation of pain	14
2	5	Basic local anaesthetic structure	16
	6	Lumbar Plexus Anatomy	31
	7	The relationships of the lumbar plexus to the psoas	33
3	8	The distribution of the femoral nerve in the thigh	35
	9	The distribution of the obturator nerve	36
	10	Landmarks for the psoas compartment block	40
	11	Psoas block - Puncture site	41
4	12	Deep landmarks of psoas compartment observed from above	43
	13	The injection needle is introduced perpendicular to the skin	44
	14	Evaluation of sensory block of lumbar plexus	46

Chapter	Fig no.	Illustrates	Page
	15	Evaluation of motor block of lumbar plexus	46
	16	Positioning of patients for epidural catheter insertion	56
	17	Patient in sitting position in preparation for epidural placement	59
	18	Patient positioning in lateral decubitus position	59
	19A	Lumbar epidural block through the midline approach Positioning and draping for midline approach	60
6	19B	Lumbar epidural block through the midline approach: Administration of local anesthesia to reduce pain during consequent epidural needle entry through the skin and subcutaneous tissues	61
	19C	Lumbar epidural block through the midline approach: Tuohy needle lodged in the interspinous ligament	61
	19D	Lumbar epidural block through the midline approach: Tuohy needle with glass syringe attached for testing the loss of resistance to air	62
Patients and methods	20	Visual analogue pain scale	86

List of Tables

Chapter	Table No.	Title	Page
1	1	Classification of peripheral nerves according to fiber size and physiological properties	5
3	2	Branches of the lumbar plexus	32
3	3	Branches of femoral nerve	35
4	4	Modified Bromage scale	47
5	5	Complications related to PNBs	48
6	6	Anatomical landmarks to identify vertebral levels before epidural injection	57
	7	Problem Solving: Epidural Placement	63
	8	Contraindications of epidural anesthesia	66
	9	Neurological complications associated with epidural anesthesia:	67
	10	Comparison between the two studied groups as regards demographic data	89
	11	Comparison between the two studied groups as regards duration of surgical procedures	90
lts	12	Comparison between the two studied groups as regards Technique time	91
Results	13	Comparison between the two studied groups as regards number of attempts	92
	14	Comparison between the two studied groups as regards Mean Arterial Blood Pressure at fixed times	93
	15	Comparison between the two studied groups as regards Heart Rate at fixed times	

	16	Comparison between the two studied groups as regards Respiratory Rate at fixed times	
	17	Comparison between the two studied groups as regards Peripheral Oxygen Saturation {SpO ₂ } at fixed times	
	18	Comparison between the two studied groups as regards Pain Score (VAS) at fixed times	
	19	Comparison between the two studied groups as regards Sedation Score at fixed times	99
	20	Comparison between the two studied groups as regards Time elapsed till the 1 st dose of rescue analgesia given and the total analgesic requirement in 24 hours postoperatively	

Introduction

Major lower limb surgery is often painful and requires aggressive management. Poorly treated pain can have negative impact on recovery especially owing to disruption in physiotherapy resulting in stiffness of joints and slow progress in mobility. Total hip arthroplasty, one of the most frequently performed surgical procedures (*Uma et al., 2007*).

Aging of the population is responsible for making total hip arthroplasty (THA) a common procedure, especially due to the greater prevalence of osteoarthritis. Advanced age and associated diseases in those patients represent a challenge for anesthesia and analgesia for THA. The increased stress imposed to the patient by the surgery is a great contribution for the higher incidence of cardiovascular and pulmonary complications. For this reason, the choice of anesthetic technique, which should be easy to execute, should decrease perioperative morbidity, and allow early patient ambulation, is crucial (Fischer and Simanski, 2005).

Although different techniques are used in THA, the best technique based on efficacy and safety has not been determined. General anesthesia, neuraxial blockades, and peripheral nerve blocks (lumbar and sacral plexus blocks) represent the techniques used more often (*Türker et al.*, 2003).

Each technique has different efficacy with advantages and disadvantages. Neuraxial blocks are probably used more often due to the quality and predictability of the anesthetic blockade, low cost, and easiness to perform. However, those techniques are not devoid of risks (*Horlocker and Wedel*, 1998).

Recently, lumbar plexus blocks for anesthesia and analgesia in THA have received more attention. Excellent analgesia and limited motor and sympathetic blockades, without the adverse effects of local anesthetics and opioids administered in the neuroaxis, and the lower morbidity of hemorrhagic complications than neuroaxial blocks in patients treated with drugs that change coagulation parameters represent the main advantages of peripheral nerve blockade (*Stevens et al., 2000*).

Pain relief and increased hip mobility and the quality of life in patients with chronic degenerative disease of the hip joint are the objective of total hip arthroplasty (THA). However, in this process postoperative functional rehabilitation determines the success of the treatment (*Klasen et al.*, 2005).

After THA, pain is severe and it is aggravated by movements, especially in the first 24 hours. The choice of anesthetic and postoperative analgesia technique should

promote adequate pain relief after arthroplasty with minimal side effects and allow early mobility and active participation in the rehabilitation process, accelerating functional recovery, ambulation, and hospital discharge (*Kampe et al., 2001*).

Although different postoperative analgesia strategies are available for THA, the best one, based on the efficacy of pain control and effects on postoperative rehabilitation, has not been determined. Epidural analgesia is probably the technique used more often after THA (Singelyn et al., 2005).