RADIOLOGICAL ASSESSMENT OF CHRONIC HIP PAIN IN ADULTS

Essay

Submitted By
Waleed Sabry Ali El-Sharkawy
M.B.B.CH.
UNIVERSITY OF MANSOURA

For partial fulfillment of Master degree in Radiodiagnosis

Under Supervision of **Dr. Mounir Sobhy Guirguis**

Assistant professor of Radiodiagnosis Faculty of medicine, Ain Shams University

Dr. Maha Hussein Anwar

Assistant professor of Radiodiagnosis Faculty of medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

> > 7..0

Acknowledgment

First and Above all, all thanks to ALLAH the merciful, the compassionate without his help, I could not finish this work.

I would like to thank Dr. Mounir Sobhy Guirguis, Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University, for his continuouse encouragement and sincere advice which have been the main factors to complete this work.

Words stands short to express my respect and thanks to Dr. Maha Hussein Anwar Assistant professor of Radiodiagnosis Faculty of medicine, Ain Shams University for his great support and help to complete this work.

I am also delighted to express my deep gratitude and thanks to all my dear Professors and colleagues.

List of Contents

Introduction and Aim of the Work	٠ ١
Review of Literature	
Anatomical consideration	۳
Pathology of chronic hip pain in adults	۰ ۸
• Techniques of different modalities for imaging the hip joint	۲٤
Radiological findings of lesions causing chronic hip pain	£•
Summary and Conclusion	۹۳
References	१٦
Arabic Summary	

List of Figures

Fig. No.	Page No.
Fig. \ Growth anatomy of the hip (coronal section)	
Fig. 7 Growth anatomy ligaments of the hip	٦
Fig. F Growth anatomy relations of the hip joint	٧
Fig. 4 Avascular necrosis microscopic picture	٩
Fig. Synovial pannus	۱۳
Fig \ Grading of intra-capsular fractures	۱۷
Fig. V Normal pelvis X ray AP	
Fig. A Normal unilateral hip X ray AP	77
Fig. 4 Normal hip X ray Unilateral frog-leg	۲٧
Fig. \ \cdot \cdot a \ Normal hip coronal T\W image \dots	
Fig'b Normal hip axial T'W image	
Fig' '.a Normal hip axial T'W MR arthrography image .	٣٣
Fig. \ \ \. b \ Normal hip Sagittal T\ \ W MR arthrography ima	
Fig. \ \cdot\ c \ Normal hip Midline coronal T\ \ W MR	
arthrography image	٣٣
Fig. \ \cdot \.a \text{Normal hip CT}	
Fig' 7.b Normal bony pelvis CT in transverse section	٣٤
Fig. \ \ Normal sonographic examination of the hip	
Fig. 14 Normal bone scan	
Fig. 10 Avascular necrosis X ray	٤١
Fig. \ Avascular necrosis Frog-leg lateral radiograph	٤١
Fig. \ \ X ray avascular necrosis	
Fig. \ \ X ray avascular necrosis	
Fig. 19 X ray avascular necrosis	
Fig. Y · X ray avascular necrosis	
Fig. Y X ray avascular necrosis	٤٢
Fig. YY Avascular necrosis CT	٤٣
Fig. YT Avascular necrosis CT	٤٣
Fig. Y & Avascular necrosis CT	٤٣
Fig. Yo Avascular necrosis CT	٤٤
Fig. Y7 Avascular necrosis MRI	
Fig. YY Avascular necrosis MRI	
Fig. YA Avascular necrosis MRI	
Fig. Y Avascular necrosis MRI	
Fig Avascular necrosis bone scan	
Fig. "\ Avascular necrosis MRI	

Fig. TY Osteoarthritis X-ray	٤٨
Fig. TT Osteoarthritis X-ray	٤٨
Fig. 7 2 Osteoarthritis X-ray	٤٩
Fig. To Osteoarthritis CT	٤٩
Fig. ** Osteoarthritis MRI	
Fig. TV Rheumatoid arthritis X ray	٥٢
Fig. Th Rheumatoid arthritis MRI	٥٣
Fig. TA Rheumatoid arthritis MRI	
Fig. 4 · Rheumatoid arthritis ultrasound	
Fig. 4 \ Rheumatoid arthritis bone scan	
Fig. 47 ankylosing spondylitis X ray	
Fig. 47 Septic arthritis X ray	
Fig. 22 Septic arthritis MRI	
Fig. 40 a Septic arthritis X ray	01
Fig. 40b Septic arthritis MRI	
Fig. toc Septic arthritis CT	
Fig. [£] Bone marrow oedema syndrome X ray	
Fig. 4 Va Bone marrow oedema syndrome X ray	
Fig. ^{£ V} b Bone marrow oedema syndrome CT	
Fig. [£] Vc Bone marrow oedema syndrome bone scan	
Fig. ^{£ V} d Bone marrow oedema syndrome MRI	
Fig. 4 A Bone marrow oedema syndrome MRI	٦١
Fig. ^{£ 9} Bone marrow oedema syndrome MRI	
Fig. • · Bone marrow oedema syndrome bone scan	77
Fig. • \ Osteochondromatosis X ray	
Fig. of Osteochondromatosis X ray	77
Fig. ora Osteochondromatosis X ray	
Fig. • "b Osteochondromatosis CT	
Fig. orc Osteochondromatosis MRI	
Fig. of Osteochondromatosis MRI	
Fig. • • Pigmented villonodular synovitis X ray	٦٦
Fig. • a Pigmented villonodular synovitis X ray	٦٨
Fig. • 7b Pigmented villonodular synovitis CT	
Fig. o c Pigmented villonodular synovitis MRI	٦٨
Fig. o d Pigmented villonodular synovitis MRI	
Fig. • V Pigmented villonodular synovitis MRI	
Fig. • A Pigmented villonodular synovitis MRI	
Fig. • a Acetabular fracture X ray	
Fig. • 4 b Acetabular fracture CT	

Fig. 7. Acetabular fracture TD CT	٧١.
Fig. \\ Impaction fracture of femoral head X ray	۲۷.
Fig. 'Y Stress fracture X ray	۷۳
Fig. Tr Stress fracture X ray	٧٣
Fig. 7 ! Insufficiency fracture X ray	٧٤
Fig. 7. Insufficiency fracture X ray	٧٤
Fig. 77 Insufficiency fracture MRI	
Fig. TV Acetabular fracture MRI	٥٧.
Fig. 74 Femoral fracture MRI	٧٦
Fig. 79 Femoral fracture MRI	٧٦
Fig. V · Osteoid osteoma X ray	. ۷۷
Fig. V \ Osteoid osteoma X ray	٠٧٧
Fig. YY Osteoid osteoma CT	٧٨
Fig. Y TO Steoid osteoma CT reformat	
Fig. V & Osteoid osteoma CT	
Fig. Vo Osteoid osteoma MRI	
Fig. Y7 Osteoid osteoma MRI	
Fig. YY Osteoid osteoma bone scan	
Fig. VA Chondrosarcoma X ray	
Fig. V Chondrosarcoma CT	
Fig. A · Chondrosarcoma CT	
Fig. ^ Chondrosarcoma MRI	
Fig. AY Bursitis CT	۸٤
Fig. AT Bursitis MRI	
Fig. A & Bursitis MRI	
Fig. Ao Bursitis ultrasonography	
Fig. ^{AT} Muscle tear MRI	
Fig. AV Tendinitis	
Fig. ^^ Labral tear MR arthrography	
Fig. A Labral tear MR arthrography	
Fig. 4. Labral tear MR arthrography	
Fig. [¶] Labral tear MR arthrography	
Fig. 47 Labral tear MR arthrography	۹١

Abbreviations

τD Two dimensions

Three dimensions

Technetium 99

AP Anteroposterior

AVN Avascular necrosis

FDG Fluorodeoxyglucose

FOV Field of view

FSE Fast spine echo

HDP Hydroxyethylene diphosphanate

ITOH Idiopathic transient osteoporosis of the hip

mCi Milli Curi

MDP Methylene diphosphonate

MRA Magnetic resonance arthrography

MRI Magnetic resonance imaging

OA Osteoarthritis

PET Positron emission tomography

PVNS Pigmented villonodular synovitis

RA Rheumatoid arthritis

RA Rheumatoid arthritis

SE Spin echo

SOC Synovial osteochondromatosis

SPECT Single photon emission computed tomography

STIR Short time inversion recovery

Ty Longitudinal relaxation time

T\W T\ weighted

Transverse relaxation time

Tr W Tr weighted

TBMES Transient bone marrow edema syndrome

TE Time of echo

TOH Transient osteoporosis of the hip

TR Time of repetition

INTRODUCTION

Chronic hip pain is a common problem in the adults. It can be caused by numerous causes including occult trauma, infection, arthropathies, neoplasms, avascular necrosis, transient osteoporosis, or other causes.

Clinical data play an important role in evaluation of chronic hip pain. Routine radiographs are essential to plan further imaging studies. MRI, CT, ultrasonography, and radionuclide scans may all be used as second technique (*Berquist et al.*, **.*.).

The imaging pathway for hip pain has evolved considerably with the advent of MRI. The latter has supplanted bone scintigraphy as the investigation of choice when occult fractures, bone marrow edema syndromes or avascular necrosis are suspected. MRI is also invaluable for evaluating synovial proliferative disorders of the hip such as pigmented villonodular synovitis and synovial osteochondromatosis. Furthermore by combining joint distension with multiplanar imaging, MR arthrography (MRA) allows detailed assessment of the acetabular labrum and cartilage (*Fang and Teh*, **•***).

CT still has a lot to offer in musculoskeletal work, being the best modality for examining cortical bone, and remaining the cross-sectional imaging technique of choice where MRI is unavailable or cannot be performed, for example in claustrophobic patients or those fitted with cardiac pacemakers (Grainger and Allison, 199V).

CT has a key role in delineating fractures and assessing the bony architecture of the hip (*Fang and Teh*, *r...r*).

rD CT provides a dramatic representation of the overall fracture and orientation of fragments, although it has been

Introduction and Aim of the Work

shown to miss small undisplaced fracture lines and intraarticular fragments (Sutton, r..r).

Ultrasound has an important role in detecting joint effusions and bursitis, and for guiding intervention. The injection of local anaesthetic into the hip joint may allow confirmation of the hip as the source of symptoms. This may be achieved under fluoroscopic or ultrasound guidance (*Fang and Teh, r...r*).

There are several situations in which sonography can produce results at least equal to what is possible with MRI imaging examples include joint effusion, and soft tissue masses (*Jacobson*, 1999).

Sonographic evaluation of the joint and periarticular pathology clearly has applications in numerous clinical scenarios, not only for diagnosis but also in some situations for ultrasound-guided aspiration. It is a rapid, inexpensive technique. But it needs adequate equipment, training and expertise to be used as a first line imaging modality (*Wang et al.*, 1991).

The bone scan is non specific, however, with the appropriate clinical and laboratory correlation, and the use of other complementary diagnostic modalities, it provides a valuable, sensitive, and unique means of assessing the diseases of the skeletal system (*Grainger and Allison*, 1991).

Aim of The Work

The aim of the work is to emphasize the role of each imaging modality in the diagnosis of hip pain.

ANATOMICAL CONSIDERATION

The hip joint is a multiaxial ball and socket synovial joint (Fang and Teh, Y. Y). This joint is composed of two parts; the head of the femur (ball), and the acetabulum (socket) (Feinberg and Post, 1991). The acetabulum is formed by fusion of the three bones of the os innominatum. Ilium, Ischium and Pubis at a "Y" shaped cartilage (Williams et al., 1911). The cartilage devoid central region of the acetabulum, the acetabular fossa, is filled with fibrofatty tissue (Haversian pad) and is lined with synovium (fig. 1) (Petersilge, Y. . .).

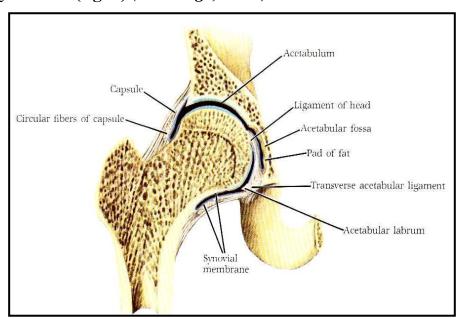


Fig. 1 Coronal section of the hip (Quoted from Snell, 194A).

Attached at the outer edge of the lunate is the acetabular labrum which is a fibrocartilaginous ring of triangular cross section. The acetabulum is spanned inferiorly by the transverse ligament which gives attachment to the ligamentum teres, which inserts into the fovea of the femoral head. The ligamentum teres transmits the foveal artery which only contributes a little to the

blood supply of the adult femoral head. The joint capsule is attached circumferentially around the labrum and transverse ligament and passes laterally to enclose the femoral neck. Capsular fibres are reflected as retinacular fibres which bind down nutrient arteries, which supply the femoral head. Fractures occurring within the capsule therefore place the blood supply of the femoral neck at risk. Three ligaments strengthen the capsule: the iliofemoral ligament, the ischiofemoral ligament and the pubofemoral ligament. The ischiofemoral ligament arises from the posteroinferior margin of the acetabulum. Its fibres pass laterally, blending with the circular fibres of the capsule, the zona orbicularis (*Fang and Teh*, *Y...Y*).

The fibrous capsule:

The capsule of the hip is strong and dense. It is attached circumferentially around the labrum acetabulare and transverse ligament. Above, it is attached to the margin of the acetabulum or to a mm beyond the glenoid labrum behind; but in front, it is attached to the outer margin of the labrum, and opposite to the notch where the margin of the cavity is deficient, it is connected to the transverse ligament and by a few fibers to the edge of the obturator foramen. It surrounds the neck of the femur, and is attached, in front, to the intertrochanteric line; above to the base of the neck; behind to the neck, about 1.70 cm above the intertochanteric crest; below, to the lower part of the neck, close to the lesser trochanter (*Williams et al.*, 1919). From its femoral attachment, some of the fibers are reflected back along the neck of the femur as longitudinal band termed retinacular fibers (*Sinnatamby*, 1999).

The synovial membrane of the hip joint:

It lines the entire capsule, invests the retinacular fibers and forms a sleeve around the Haversian pad and ligamentum

teres. Occasionally a perforation in the anterior part of the capsule permits communication between thr synovial cavity and the iliac bursa (*Sinnatamby*, 1999).

The acetabular labrium:

It is a fibrocartilagenous ring that rims the acetabulum and is triangular in cross section. The labrum is thicker posterosuperiorly and thinner anteroinferiorly. The labrum is attached directly to the osseous rim of the acetabulum. It blends with the transverse ligament at the margins of the acetabular notch. A cleft is created where the ligament and labrum join, and this cleft should not be confused with a labral tear (*Gzerny et al.*, 1999).

Ligaments of the hip joint (fig. Y):

The iliofemoral ligament lies in front of the joint. It is triangular in shape. It is intimately connected with the capsule. It is attached, above to the lower part of the anterior inferior iliac spine; below, it divides into two bands, one of which passes downward to the lower part of the intertrochanteric line; the other is directed downward and lateral ward to attach to the upper part of the same line. In some cases, there is no division, and the ligament spreads out into a flat triangular band which is attached to the whole length of the intertrochanteric line.

The pubofemoral ligament is also triangular, with its base at the innominate bone, where it is attached to the iliopectineal eminence, the superior ramus of the pubis and the obturator membrane. Below it blends with the capsule and with the deep surface of the medial fibers of the iliofemoral ligament.

The ischiofemoral ligament consists of a triangular band of strong fibers, which thickens the back of the capsule. It spring from the ischium below and behind the acetabulum, and

blend with the circular fibers of the capsule, the zona orbicularis (Williams et al., 1914, Fang and Teh, 7...).

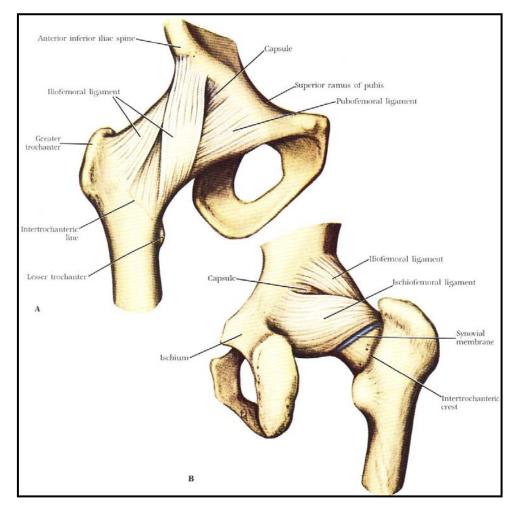


Fig. r ligaments of the hip. A. Anterior view.

B. Posterior view (Quoted from Snell, 1974).

Blood supply:

The medial and lateral circumflex arteries provide most of the blood supply to the femoral head and proximal femur through the anastomosis at the base of the neck and head. The

lateral part of the extra capsular arterial ring provides most of the blood to the femoral head. The obturator artery provides variable vascular supply to the head through the ligamentum teres. The capsule and synovial membrane are supplied by nearby vessels (*Stoller*, 1997).

Nerve supply:

The hip joint is supplied by articular branches from the sacral plexus, sciatic, obturator, accessory obturator and a filament from the branch of the femoral supplying the rectus femoris (Williams et al., 1949).

Muscles surrounding the hip (fig \forall):

Anteriorly: Iliopsoas, pectineus, rectus femoris muscles, iliopsoas and rectus femoris muscles separates the femoral vessels and nerve from the joint.

Posteriorly: Obturator internus, the gemelli and the sciatic nerve.

Inferiorly: Obturator externus tendon (Williams et al., 1949).

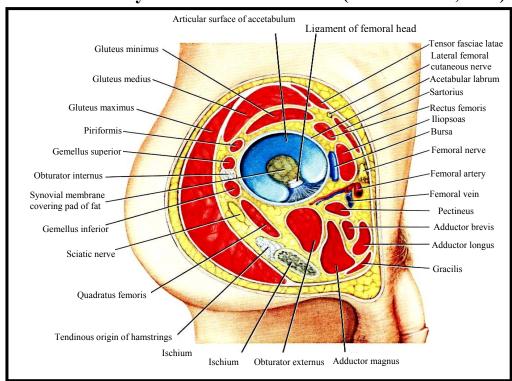


Fig. "Relations of the hip joint (Quoted from Snell, 194A).