USING SIMULATION MATHEMATICAL MODELS TO STUDY THE ENVIRONMENTAL CHANGES DUE TO NAVIGATION DEVELOPMENT IN THE NILE RIVER

 \mathbf{BY}

Eng. Mohamed El-Sayed Mohamed Abdel Naby

Assistant Researcher-National Water Research Center, Nile Research Institute Diploma, Environmental Science, Ain Shams University, ۲۰۰۲ M. Sc. Environmental Engineering, Ain Shams University, ۲۰۰۲

A thesis Submitted in Partial Fulfillment of The Requirements for the Doctor of philosophy in Environmental Science

Department of Engineering Science Institute of Environmental Studies and Research Ain Shams University

7.17

APPROVAL SHEET

USING SIMULATION MATHEMATICAL MODELS TO STUDY THE ENVIRONMENTAL CHANGES DUE TO NAVIGATION DEVELOPMENT IN THE NILE RIVER

BY

Eng. Mohamed El-Sayed Mohamed Abdel Naby

Assistant Researcher-National Water Research Center, (NRI) Diploma, Environmental Science, Ain Shams University, Y... M. Sc. Environmental Engineering, Ain Shams University, Y...

This Thesis Towards a Doctor of Philosophy in Environmental Science Has Been Approved by:

Name	Signature
. Prof. Dr : Aly Nabih El-Bahrawy	
Prof. of Hydraulics, Irrigation and Hydraulic Dept.,	
Faculty of Engineering, Ain Shams University, Cairo, Egypt.	
7. Prof. Dr.: Medhat Saad Aziz Director of Nile Research Institute (NRI),	
National Water Research Center (NWRC), Cairo, Egypt	
". Prof. Dr.: Mohamed Mohamed Nour El-Dien	
Head of Irrigation and Hydraulic Dept., Faculty of Engineering,	
Ain Shams University, Cairo, Egypt.	
. Prof. Dr. Karima Mahmoud Attia	
Deputy Director, Nile Research Institute (NRI),	
National Water Research Center (NWRC), Cairo, Egypt.	

USING SIMULATION MATHEMATICAL MODELS TO STUDY THE ENVIRONMENTAL CHANGES DUE TO NAVIGATION DEVELOPMENT IN THE NILE RIVER

BY

Eng. Mohamed El-Sayed Mohamed Abdel Naby

Assistant Researcher-National Water Research Center, Nile Research Institute Diploma, Environmental Science, Ain Shams University, ۲۰۰۲ M. Sc. Environmental Engineering, Ain Shams University, ۲۰۰۲

A thesis Submitted in Partial Fulfillment of the Requirements for the Doctor of philosophy in Environmental Science

Under The Supervision of:

1- Prof. Dr.: MOHAMED NOUR EL-DIEN

Head of Hydraulics Department., Faculty of Engineering,

Ain Shams University, Cairo, Egypt.

- Prof. Dr.: KARIMA MAHMOUD ATTIA

Deputy Director, Nile Research Institute (NRI),

National Water Research Center (NWRC), Cairo, Egypt.

- Dr.: NOHA SAMIR DONIA

Associate Prof., Environmental Engineering Department

Institute of Environmental Studies and Research

Ain Shams University, Cairo, Egypt

- Dr.: HOSSAM MOHAMED EL-SERSAWY

Associate Prof., Nile Research Institute (NRI),

National Water Research Center (NWRC), Cairo, Egypt.

ACKNOWLEDGEMENT

First of all, thanks to all without whom anything could not be possible.

I would like to express my appreciation and gratitude to *my advisor prof. Dr.*Mohamed Nour Eldien, Head of Irrigation & Hydraulics Dept., Faculty of Engineering, Ain Shams University, for his support precious remarks, suggestion and expert advice that lead to the successful completion of this study.

The author wishes to express his sincere appreciation to *prof. Dr., Karima M. Attia* Vice director, Nile Research Institute (NRI), National Water Research Center, for her guidance, and advice.

Grateful thanks are due to *Dr. Noha Samir Donia* Associate Prof Environmental Engineering Department, Institute of Environmental Studies and Research, Ain Shams University, for her guidance and advice throughout the study.

Deepest gratitude and thanks to **Dr. Hossam El Sersawy** Associate Prof., Nile Research Institute (NRI), National Water Research Center (NWRC) for his advice, support and his guidance that leads to complete this study.

Special thanks are due to *Dr. Medhet Aziz*, Director, Nile Research Institute (NRI) for his continuous support and encouragement through this research.

Deepest gratitude and thanks to *Dr. Mostafa El-Sammany*, *Dr. Mohsen yousry*, and *Dr. Talat Abdel Ghafar* Nile Research Institute (NRI), National Water Research Center (NWRC) for their analysis, advice, support and their guidance that leads to complete this study.

Finally I wish to express my deepest thanks and appreciation to *my mother* for her sacrifices, encouragement and for her support not only these days but since I was born. There is no words can express my deepest gratitude towards *my wife Hanan*. My warmest thanks are to *my daughters*, *Aya*, *Doha and my son Yassien* who supported and patient through the time of study.

Abstract

The Egyptian Government has paid a lot of attention to the preparation of the Nile River as a navigation channel. Such preparation includes surveying, dredging, and installation of aids to navigation. All such efforts aim to increase the safety of navigation in the Nile River. In this study another aspect of safety is being addressed, namely the environmental impact of channel dredging.

Recently, every country all over the world has recognized that, compared with other transportation modes, navigation causes less environmental impact and is a transport mode for sustainable development. Inland navigation is the transport mode with minimum energy consuming, transport cost saving, environmental impact decreased and traffic jam alleviated for the large quantity of freight transportation.

Studies must consider all positive and negative environmental effects of the alternative dredging plans considered. Some of the environmental effects may be changes in water levels, erosion and water velocities. The assessment will indicate whether a Statement of findings or an Environmental Impact Statement will be required, including a comprehensive mitigation plan for any adverse effects. In the development or improvement of deep-draft navigation projects, the effects of dredging on fish and wildlife resources must be considered. Another aspect of safety is being addressed, namely Environmental impacts of the disposal of dredged material, where is added to soil as sources of fertilizer and conditioner for the soil, the assessment of dredged material was conducted by comparing the average total heavy metals concentration with the permissible values of different sediment quality. The results were found within the permissible limits of standards. Two dimensional mathematical model has been used to simulate the changes in river at study reach. The model was calibrated and verified using field measurements and historical data (water levels and discharges). The calibration and verification process shows close agreement between actual and predicted parameters. Four different scenarios were applied to represent the situation before and after dredging in minimum and maximum water level.

It was concluded that Successful applications of this model to simulating large scale river channel flows proved to be reliable and could be applied to similar cases to assist decision makers. The dredging process dropped the water surface, decreased the velocity and almost improved water depths for navigation channel.

This study uses Geographical Information System to evaluate and simulate the occurred changes. Based on the actual and basic interaction between the hydraulics, morphological and environmental parameters, main tools can be utilized to illustrate and explain these relations.

Through this study Environmental Impacts Assessment (EIA) by using JICA tables for irrigation projects to represent the changes before and after the project according to the situation where can be predicted and therefore monitoring and mitigation can be applied. It was concluded that the increased turbidity might be detrimental to benthic species particularly sedentary species such as tube worms. Prolonged reduced water column clarity might also lead to a reduction in the photosynthetic productivity of the water column.

The study recommended that it's important to encourage the Nile navigation. Developing guidelines for EIA study to be conducted dredging projects which these guidelines can be used for all similar projects. Integration of new techniques modeling and GIS for impact assessment into the EIA study to help decision maker to select suitable actions and mitigation measures before the project implementation.

SUMMARY

Recently, every country all over the world has recognized that, compared with other transportation modes, navigation causes less environmental impact and is a transport mode for sustainable development. Inland navigation is the transport mode with minimum energy consuming, transport cost saving, environmental impact decreased and traffic jam alleviated for the large quantity of freight transportation.

Studies must consider all positive and negative environmental effects of the alternative dredging plans considered. Some of the environmental effects may be changes in water levels, erosion and water velocities. The assessment will indicate whether a Statement of findings or an Environmental Impact Statement will be required, including a comprehensive mitigation plan for any adverse effects.

Through this study Environmental Impacts Assessment (EIA) by using JICA tables for irrigation projects to represent the changes before and after the project according to the situation where can be predicted and therefore monitoring and mitigation can be applied. It was concluded that the increased turbidity might be detrimental to benthic species particularly sedentary species such as tube worms. Prolonged reduced water column clarity might also lead to a reduction in the photosynthetic productivity of the water column.

The study recommended that it's important to encourage the Nile navigation. Developing guidelines for EIA study to be conducted dredging projects which these guidelines can be used for all similar projects. Integration of new techniques modeling and GIS for impact assessment into the EIA study to help decision maker to select suitable actions and mitigation measures before the project implementation.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
ABSTRACT	iv
SUMMARY	vi
TABLE OF CONTENTS	vi
LIST OF FIGURES	xii
LIST OF TABLES	xiv
LIST OF SYMBOLS	xv
ABBREVIATIONS	xvi
CHAPTER \ INTRODUCTION	
\ Introduction	1
۱,۲ Problem Definition	٢
۱٫۳ Research Objectives	۲۲
1. ¿ Procedure and work plan	٣
۱,0 Thesis layout	ξ
CHAPTER Y LITERATURE REVIEW	
Y.\ Introduction	V
T,T Importance of Executing an Environmental Impact Changes	V
۲,۲,۱ The Main Focus of the Environmental Impact Changes	Λ
۲,۲,۲ Objectives of Executing an Environmental Impact Changes	Λ
۲,۲,۳ EIA Processing	۹
۲,۲,۳.a Prediction and Mitigation	11
۲,۲,۳.b Management and Monitoring	17
Y,Y,T.c Auditing	1 ٤
r,r,r.d Public Participation	10
۲,۲,٤ River Morphology	١٥

۲,۲,0 Channel Structure
ץ, י, ק Potential Environmental Effects
۲,۳ Navigational channel Requirements ۱۸
۲,۳,۱ Units Used in Inland Water Transportation
۲,٤ Factors Influencing River Navigation٢٠
۲, o Navigation channels in Egypt
۲,0,1 Navigational Bottlenecks within the Nile River
۲,0,7 Aswan / Cairo Waterway
۲,0,۳ Beheiry / Nobaria Canal (Cairo / Alexandria Waterway) ۲٦
۲,0,٤ Dammietta Branch (Cairo / Dammietta Waterway) ۲٦
۲,٦ Sedimentation Analysis of Navigable Channels ۲۷
۲,۷ Navigational Hazards
Y,A Navigation around the World
Y,A, \ The Mississippi River
۲,۸,۲ Danube River (۲۸۰۰ km - Europe)۲۹
۲,۸,۳ Elbe River Waterway (Northern Germany)٣٠
۲,۹ Channel Regulation Works ۳۰
۲,۹,۱ Temporary Works (Dredging)
۲,۱۰ Dredge Material Disposal
۲,۱۰,۱ Examples of using dredging materials ٣٤
۲,۱۱ Numerical Models
7,11,1 Overview of Numerical models
۲,۱۱,۲ Application of Two Dimensional Models٣٦

CHAPTER 3 DATA COLLECTION AND METHODOLOGY

7.) Introduction	٠٩
۳.۲ Site description	٠٩
۳.۳ Available data ٤	١,
۳.٤ Data collection ٤	۲.
۳,0 Model Description ٤	۲.
۳,۰,۱ FESWMS Model ٤	۳,
۳,0,7 SED7D Model ٤	٥
۳,٦. Numerical Techniques	, Y
۳,٧ GIS Map ٤	. 人
۳,۷,۱ Arc GIS Desktop ٤	. A
۳,۸ Checklist guideline of JICA for Agricultural and Irrigation Projects ٤	. Д
CHAPTER & ENVRONMENTAL IMPACTS ANALYSIS	
٤,١ Introduction ٤	۹.
٤,٢ Numerical Model Setup ٤	۹,
٤.٢.١ Generation of the Numerical Grid (Mesh Generation)	۹,
٤.٢.٢ Defining the Boundary Conditions ه	۰۱
٤.٢.٢.a Inlet Boundary Condition ه	۰,
٤.٢.٢.b Outlet Boundary Condition ه	۰,
٤.٢.٣ Specifying the Model Parameters (Roughness) ه	,٣
٤.٢.٤ Calibration and Verification of the Model ه	۶, ٤
٤.٢.٤.a Calibration of the Model ه	, 0
٤.٢.٤.b Results of the model calibration ه	, 0
E.Y.E.c Verification of the model	, _/
٤.٢.٤.d Result of model Verification	, ۹
٤.٣ Model Application ٦	۲١

٤.٣.١ Simulation of the Flow before dredging at minimum water ٦٢
٤.٣.٢ Simulation results before dredging at minimum water
٤.٣.٣ Simulation of the Flow after dredging at minimum water ٧٠
٤.٣.٤ Simulation results after dredging at minimum water
٤.٣. Simulation of the Flow before dredging at maximum water ٧٦
٤.٣.٦ Simulation results before dredging at maximum water ٧٧
٤.٣.٦ Simulation results after dredging at maximum water
٤, ٤ Application of Geographic Information System (GIS)
٤.٤.١ Data Models
٤.٤.١.a Vector
٤ .٤.١.b Raster
٤,٤,١.c Triangular Irregular Network (TIN)
£.£.Y ArcView GIS
٤,٥ Importance of EIA
٤,٥,١ EIA process
۶٫۰.۲ Egyptian Environmental Affairs Agency
٤,٥.٣ Environmental Affairs Officer
٤,٥.٤ Environmental Legislation
٤,٦ Description of the Surrounding Environment
۶٫٦,۱ Natural Environment 9٦
٤٦,١.١ Climatic Features
٤٦,١.٢ Air Quality
۶.٦.۲ Surface Water Quality
٤٦,٢,١ Temperature ٩٧
٤.٦.٢,٢ Hydrogen ion concentration (pH)
٤٫٦,٢٫٣ Carbonate, Bicarbonate and Total Alkalinity

٤.٦.٢٫٤ Electrical Conductivity (EC) and Total Dissolved Salts (TDS)	1 • 7
٤.٦.٢,٥ Turbidity and Total Suspended Solids (TSS)	١٠٢
٤.٦.٢,٦ Trace Elements	١٠٢
٤.٦.٣ Biological Properties	۱۰۲
٤.٦,٣,١ Phytoplankton	
٤.٦,٣,٢ Aquatic Weeds	١٠/
٤.٦,٣,٣ Zooplankton	
٤.٦,٣.٤ Fish	۱۱۲
٤.٧ Physical, Chemical and Mechanical Properties of Sediment	۱۱۲
٤.٨ Disposal of excavated material	۱۱۵
٤.٩ Environmental Monitoring Plan	۱۲۱
٤.٩.١ Pre-dredging Monitoring Plan	۱۲۷
٤.٩,٢ Through dredging Monitoring Plan	۱۲۸
CHAPTER • ANALYSIS OF RESULTS	
o,\ Introduction	171
o, The study proceeded	
	1٣٢
o, r, r The results of the calibration and validation	177
۰٫۳٫۲ The results of applying model before and after dredging in min. water	۱۳۳
ورم The results of applying model before and after dredging in max. water	١٤٠
°, ¿ Results of water surface environment	1 £ £
o,o Regarding the disposal of executed materials	١٤٤
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS	
7, Introduction	1 4 9
7.7 Conclusions	1 £ 9

7, Recommendations	, 0 ,
٦,٤ Recommendations for future studies	101
REFERENCES	107
APPENDIX (A): Water level and discharges	A-1
APPENDIX (B): Input and output of the model	B-\

LIST OF FIGURES

Figure (1,1) Steps of the research plan
Figure (7,1) Flow diagram of the EIA process and parallel studies
Figure (۲.۲) different reaches in River Nile
Figure (۲.۳) Inland Waterways Classification in the Nile Delta
Figure (٣.١) Map of the Study reach
Figure (٣,١) Profile of the thalweg in the study reach
Figure (٤.١) Finite Element Mesh generation
Figure (٤.٢) Discharge Hydrograph D.S Nag Hammadi
Figure (٤.٣) Water Level Hydrograph at Sohag Station
Figure (5.5) Effect of Roughness in minimum water on surface water along the
Longitudinal section
Figure (1.0) Effect of Roughness on velocity distribution along the Longitudinal
Section in minimum water
Figure (ξ, η) Effect of Roughness in maximum water on surface water along the
Longitudinal section
Figure (£. v) Effect of Roughness on velocity distribution along the Longitudinal
Section in maximum water
Figure (٤.٨) Simulated and observed cross sections for verification
Figure (٤.٩) Simulated and observed velocity for verification
Figure (٤.١٠) Deposition in the cross section caused navigation problems
Figure (ξ .) Contour map and the alignment of navigation path
Figure (६, ١٢) Bed elevations at study reach before dredging in min. water
Figure (٤.١٣) Water depths after dredging at min. water
Figure (٤.١٤) Water velocities before dredging at min. water
Figure (ξ. ν •) Water surface elevation before dredging at min. water

Figure (٤.١٦) Bed elevations at study reach after dredging at min. water
Figure (£.\Y) Water depths after dredging at min. water
Figure (£.\A) Water velocity after dredging at min. water
Figure (٤.١٩) Surface water elevation after dredging at min. water
Figure (٤٢٠) Bed elevations before dredging at max. water
Figure (£. ٢١) Water depths before dredging at max. water
Figure (٤.٢٢) water velocity before dredging at max. water
Figure (٤.٢٣) Water Surface elevations before dredging at maximum water AT
Figure (٤.٧٤) Bed elevation after dredging at maximum water
Figure (٤.٢0) Water depths after dredging at maximum water
Figure (٤.٢٦) Water velocity after dredging at maximum water
Figure (٤.٢٧): Water surface elevations after dredging at maximum water AA
Figure (٤.٢٨): Raster Digital Elevation Model (DEM) before dredging ٩٢
Figure (٤.٢٩): Raster Digital Elevation Model (DEM) after dredging
Figure (٤-٣٠): Raster Digital Elevation Model alignment of navigation path
Figure (٤-٣١): Raster Digital Elevation Model (DEM) output
Figure (٤,٣٢): Locations of data collection
Figure (٤,٣٣): TSS different between before and through dredging
Figure (٤,٣٤): Turbidity different between before and through dredging ١٠٦
Figure (٤,٣0): Phytoplankton Genera Percentage Monitored before dredging
Figure (٤,٣٦): Phytoplankton Genera Percentage Monitored during dredging ۱۱۱
Figure (٤,٣٧): Zooplankton Genera Percentage Monitored before dredging \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Figure (٤,٣٨): Zooplankton Genera Percentage Monitored during dredging \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Figure (٤,٣٩): Dredging Materials Samples Results
Figure (ξ,ξ·) Iron Concentration in dredging materials
Figure (£,£) Sulphate Concentration in dredging materials