ICD Implantation and Follow Up Five Years Registry and Comparative Study With Antiarrhythmic Drugs

Thesis Submitted by

Alaa Ashour Hadad

In Partial Fulfillment of Doctorate Degree in Critical Care Medicine

Supervisors

Prof. Dr. Hassan Khaled Nagi, MD

Prof. & Chairman of Critical Care Medicine,
Critical Care Medicine Department,
Cairo University

Prof. Dr. Mohamed Hammouda, MD

Assist. Prof. of Critical Care Medicine, Critical Care Medicine Department, Cairo University Prof. Dr. Adel Hussien, MD

Assist. Prof. of Critical Care Medicine, Critical Care Medicine Department, Cairo University

Cairo University 2008

Contents

Introduction	1
Aim of The Work	4
Review of Literature	
Chapter I: Genetics and Mechanisms of Cardiac Arrhythmias	5
Chapter II: Therapy for Cardiac Arrhythmias	29
Chapter III: Overview of Implantable Cardioverters Defibrilators	42
Chapter IV: Follow Up and Complications of Implantable Cardioverters Defibrilators	65
Chapter V: Clinical Outcome & Trails of Implantable Cardioverters Defibrilators	102
Patients & Methods	129
Results	146
Discussion	187
Summary	204
Conclusions	208
Recommendations	210
References	211
Arabic Summary	٤-1

Abstract

Background: The implantable cardioverter-defibrillator (ICD) has emerged as the primary nonpharmacologic option for many patients who are at continuing high-risk for fatal ventricular tachyarrhythmias.

Aim of the work: Our aim was to follow-up the patients with implanted ICDs, to assess the efficacy of ICD therapy, its impact on survival, quality of life, and monitor for its related complications.

Methodology: The present study included 75 patients (63 males and 12 females), their mean age was 47.6±16.1 years. The mean LVEF was 43.12±15.8%. Out of the 75 pts studied, 10 had structurally normal hearts. Of the remaining 65 pts; IHD (without dilatation) was present in 6, ICM in 29, idiopathic DCM in 19, RHD in 3, congenital heart disease in 2, HOCM in 3 and ARVD in 2 pts, and one pt with Brugada syndrome. All patients were followed-up for a mean period of 54.00±34.4 months.

Results:

- Non-significant change in LVEF% before and after ICD implantation (43.12% vs 45.35%, respectively), however, pts with CRT-D showed significant improvement in LVEF (27.29%before vs 39.5% after implantation, p value:0.02).
- Non-significant improvement in NYHA class before and after ICD implantation. However,pts with CRT-D showed significant improvement in NYHA class (p value:0.05).
- ICD-related complications comprised: (1) *Peri-operative* in 26.6% of pts, (2) *Short-term* in 33.3% of pts, and (3) *Long-term* in 25.3% of pts.

The incidence of inappropriate detection was 25.3% with the commonest cause is inappropriate settings in 17.3% of pts. AF comprised the commonest cause of inappropriate therapies (10.6%). Inappropriate cardioversion shocks occurred in 12% of pts vs. 9.3% for inappropriate ATP therapies.

24% of the ICD recipients were non users, with remarkable higher prevalence of ischemia in those who received ICD therapy specially in pts with cardiomyopathy.

Highly significant reduction in frequent hospital readmissions post-implantation compared to preimplantation (41.3% vs. 96%, respectively).

Follow-up of pts showed 1^{st} year survival of 93%, 2^{nd} year survival of 89%, 3^{rd} year survival of 89%, and 1^{st} year freedom of SCD of 98%. Cardiac death occlusion 20% of pts (12% by pump failure and 4% by incessant VT, and 4% combined).

In conclusion: ICDs have no impact on LVEF or NYHA class except in pts with CRT-D, however there was significant reduction in hospital admission following ICD implantation & high survival rate. Regular follow up schedules is the corner stone in management of these pts for detection of problems and appropriate programming.

Key words: ICD, VTs, dilated crdiomyopathy.

Acknowledgement

First of all, praise and thanks to ALLAH for providing We with time and effort to accomplish this thesis.

I wish to express my deep gratitude to **Professor Dr. Hassan Khaled**, Professor and Chairman of Critical Care Medicine, Cairo University for his enthusiasm, keen supervision, continuous encouragement and meticulous guidance and follow up throughout this work. The time I worked under his supervision consolidated my knowledge, refined my experience and made me fell confident as a research student.

I am greatly indebted to **Professor Dr. Mohamed Ali Hammouda**, Assistant professor of Critical Care Medicine, Cairo University for his sincere contribution in this work with both his time and effort, and for his sympathy, kindness and constructive advice.

A special tribute and cordial thanks are paired to my teacher **Dr. Adel Hussien**, Assistant Professor of Critical Care Medicine, Cairo University for his authentic guidance, meticulous supervision, and for treating me in a brotherly way. He gave me a lot of his time, effort and experience to accomplish this work.

I am also grateful to **Professor Dr. Hesham Al-Aassar**, Assistant Professor of Critical Care Medicine, Cairo University for his great help and authentic guidance.

A special tribute and cordial thanks are paired to **Professor Dr. Ahmed Abdulaziz**, Assistant Professor of Critical Care Medicine, Cairo University for his great help and authentic guidance.

A special tribute and cordial thanks are paired to **Dr. Hamdy Saber**, Lecturer of Critical Care Medicine, Cairo University for his sincere contribution in this work with both his time and effort.

Finally but not the last special thanks and gratitude to **Professor Dr. M. Sherif Mokhtar**, the leader, initiative of ICD implantation in Egypt, and the God father of Critical Care Medicine, for his valuable advice and great endless support. He gave me a lot of his time, effort and experience to accomplish this work.

Also, I would like to thanks specially Mrs. Neveen Said, who helped me a lot to finish this work and adding final touches.

I am also thankful to ALL STAFF MEMBERS OF THE CRITICAL CARE DEPARTMENT, who made all the circumstances favorable for me to complete this work.

Alaa Ashour

2008

List of Abbreviations

AAD(s) : Antiarrhythmic drug(s)

AADRx : Antiarrhythmic drug therapy

ACC/AHA : American College of Cardiology/American Heart

Association

AF : Atrial fibrillation

AMI : Acute myocardial infarction

ARVD : Arrhythmogenic right ventricular dysplasia

ATP : Antitachycardia pacing

AV : Atrioventricular

AVID : Antiarrhythmics Versus Implantable Defibrillator trial

AVR : Aortic valve replacement

BBB : Bundle branch block

BEOL : Battery end of life

BOL : Beginning of life

bpm : beat per minute

CABG : Coronary artery bypass graft

CABG patch : Coronary Artery Bypass Graft Trial

CAD : Coronary artery disease

CASH : Cardiac Arrest Study, Hamburg trial

cc : cubic centimeter

CHF : Congestive heart failure

CIDS : Canadian Implantable Defibrillator Study trial

CMS : US centers for Medicare and Medicaid Services

COMPANION: Comparison of Medical Therapy, Pacing, and

Defibrillation in Heart Failure

COP : Cardiac output

CPR : Cardiopulmonary resuscitation

CPVT Catecholaminergic polymorphic ventricular tachycardia

CRT : Cardiac resynchronization therapy

CRT-D : Cardiac resynchronization therapy with defibrillator

CRT-P : Cardiac resynchronization therapy with permanent

pacemaker

CV : Cardioversion

CVS : Cerebrovascular stroke

DAD : Delayed After Depolarization

DAVID : Dual chamber and VVI Implantable Defibrillator

DCM : Dilated cardiomyopathy

DEFINITE: Defibrillators in NonIschemic Cardiomyopathy

Treatment Evaluation

DFT(s):

Defibrillation threshold(s)

DINAMIT : Defibrillator in Acute Myocardial Infarction Trial

DVT : Deep venous thrombosis

EAD Early After Depolarization

EAS : Electronic article surveillance

ECG : Electrocardiography

EF : Ejection fraction

EGM(s) : Electrogram(s)

EMI : Electromagnetic interference

EOL : End of life

EP : Electrophysiology

ERI : Elective replacement indicator

FDA : Food and Drug Association

HD : Heart disease

HF : Heart failure

HOCM : Hypertrophic obstructive cardiomyopathy

HR : Heart rate

HRV : Heart rate variability

ICD(s):

Implantable cardioverter-defibrillator(s)

ICM : Ischemic cardiomyopathy

IHD : Ischemic heart disease

IVF Idiopathic ventricular fibrillation

J : Joule

Kg : Kilogram

LECV(s) : Low-energy cardioversion(s)

Li/SVO : Lithium silver vanadium oxide

LQTS : Long QT syndrome

LV : Left ventricle

LVEDV : Left ventricular end-diastolic volume

LVEF : Left ventricular ejection fraction

LVESV : Left ventricular end-systolic volume

M : Meter

MADIT : Multicenter Automatic Defibrillator Implant Trial

MADIT CRT : Multicenter Automatic Defibrillator Implant Trial with

Cardiac Resynchronization Therapy

MADIT II : 2nd Multicenter Automatic Defibrillator Implant Trial

MI(s) : Myocardial infarction(s)

min : Minute

min⁻¹ : per minute

MIRACLE ICD : Multicenter InSync ICD Randomized Clinical Evaluation

MIRACLE ICD: 2nd Multicenter InSync ICD Randomized Clinical

II Evaluation

mL : Milliliter

mm : Millimeter

MRI : Magnetic resonance imaging

ms : Millisecond

MUSTT : Multicenter UnSustained Tachycardia Trial

mV : Millivolt

MVT(s) : Monomorphic ventricular tachycardia(s)

NASPE : North American Society of Pacing and Electrophysiology

NIPS : Noninvasive programmed stimulation

NISCM : Non-ischemic cardiomyopathy

NSR : Normal sinus rhythm

NYHA : New York Heart Association

OMT : Optimal medical therapy

OMIM Online Mendelian Inheritance in Man

PACMAN : Pacing for Cardiomyopathy

PCI : Percutaneous coronary intervention

PG(s) : Pulse generator(s)

Pt(s) : Patient(s)

PVCs: Premature ventricular contractions

PVT : Polymorphic ventricular tachycardia

QoL : Quality of life

QTc Corrected QT

RA : Right atrium

RBBB : Right bundle branch block

REVERSE: Resynchronization Reverses Remodeling in Systolic Left

Ventricular Dysfunction

RF : Radiofrequency

RHD : Rheumatic heart disease

RRR : Relative risk reduction

RV : Right ventricle

RVOT : Right ventricular outflow tract

RyR2 Ryanodine receptor

SAECG : Signal-averaged electrocardiogram

SC : Subcutaneous

SR Sarcoplasmic reticulum

SCD(s) : Sudden cardiac death(s)

SCD-HeFT: Sudden Cardiac Death in Heart Failure Trial

SCV : Subclavian vein

sec. : second

SHD : Structural heart disease

ST : Sinus tachycardia

SVC : Superior vena cava

SVT(s) : Supraventricular tachycardia(s)

T.B. : Tuberclosis

TCL : Tachycardia cycle length

ULV : Upper limit of vulnerability

V : Volt

V. flutter : Ventricular flutter

 V_{max} Rate of rise of action potential upstroke

VecToR: Ventricular Resynchronization Therapy Randomized

Trial

VF : Ventricular fibrillation

VO₂ : Oxygen consumption

vs. : versus

VSD : Ventricular septal defect

VT(s) : Ventricular tachycardia(s)

V-V : Ventricle to ventricle

WPW : Wolf Parkinson White syndrome

 $\mathbf{Yr}(\mathbf{s})$: Year (s)

List of Tables

Table No.	Title	Paģe
Table (1)	Mechanisms of Arrhythmogenesis	21
Table (2)	Acceptable values for transvenous systems	71
Table (3)	Complications resulting from the subclavian approach	80
Table (4)	Pocket-related complications	81
Table (5)	Lead related complications	<i>85</i>
Table (6)	Causes and treatment options of inappropriate ICD therapies	90
Table (7)	Causes and treatment options for failure to deliver therapy	93
Table (8)	Causes and treatment options for failure to provide effective therapy	96
Table (9)	Causes and evaluation of frequent shocks	97
<i>Table (10)</i>	Secondary prevention trials	112
<i>Table (11)</i>	Primary prevention trials	123
<i>Table (12)</i>	CRT-D Device Trials	127
<i>Table (13)</i>	All patients clinical characteristics	146
<i>Table (14)</i>	Etiology of VT	150
<i>Table (15)</i>	Indication Class for ICD implantation	152
Table (16)	Mode of ICD implants	152
Table (17)	Yearly ICD implantation rate	155
Table (18)	LVEF% (before & after implantation)	156
Table (19)	LVEF% in the three groups (before, after implantation)	157
Table (20)	LVEF% before & after implantation (different mode of pacing)	158

Table No.	Title	Page
<i>Table (21)</i>	NYHA class before & after implantation	159
<i>Table</i> (22)	NYHA class before & after implantation (in the three groups)	159
<i>Table (23)</i>	NYHA class before & after implantation (different mode of pacing)	160
<i>Table (24)</i>	Overall related complications	162
Table (25)	Frequency of peri-operative complications:	163
Table (26)	Frequency of short-term complications in the study population	164
Table (27)	Frequency of long-term complications in our study	165
Table (28)	Correlation between electrical storm and LVEF%	165
Table (29)	Incidence of inappropriate detection:	167
Table (30)	Incidence of inappropriate therapy in the study population:	169
Table (31)	Frequency of therapy-induced acceleration of VT in our study	171
Table (32)	Percentage of therapy success rate from the 1 st attempt in the study population:	172
Table (33)	Percentage of overall success of ICD therapy in the study population	175
Table (34)	Monotherapy vs. combined therapy before ICD implantation	177
Table (35)	Monotherapy vs. combined therapy after ICD implantation	179
Table (36)	Frequency of hospitalization (before & after ICD implantation)	181
Table (37)	Causes of hospitalization after ICD implantation in the study population.	182

Table No.	Title	Page
Table (38)	Patients characteristics in previous ICD studies	189
Table (39)	Number of pts and follow-up duration in previous ICD studies	190
Table (40)	Incidence of pocket hematoma in previous ICD studies	193
Table (41)	Incidence of RV lead dislodgment and SVC migration in previous ICD studies	194
Table (42)	Hospital readmission status and causes of hospitalization following ICD implantation in previous ICD studies	201
Table (43)	1 st year total survival rate and freedom from SCD in previous ICD studies	202

List of Figures

Fig. No.	Title	Page
Figure (1)	Risk stratification in the long QT (LQT) syndrome	10
Figure (2)	Risk stratification in Brugada syndrome	13
Figure (3)	Pulse generator sizes through a decade of evolution (Medtronic Corporation	43
Figure (4)	Block diagram of an ICD sensing circuit	<i>45</i>
Figure (5)	Comparison of tip electrode to RV electrode distance for integrated (panel A) versus dedicated bipolar sensing (panel B)	46
Figure (6)	Example of onset criterion "met" by VT episode	49
Figure (7)	Example of onset criterion "not met" due to sinus tachycardia	49
Figure (8)	Example of onset criterion "not met" due to exercise-induced VT	50
Figure (9)	Example of stability criterion used for VT detection and discrimination of atrial arrhythmias	51
Figure (10)	Example of uncorrelated beat	<i>52</i>
Figure (11)	Example of uncorrelated rhythm	<i>53</i>
Figure (12)	Example of correlated beat	<i>53</i>
Figure (13)	Example of correlated rhythm (SVT)	<i>54</i>
Figure (14)	Waveforms used for cardioversion and defibrillation	<i>55</i>
Figure (15)	Drawing of burst pacing therapy for sustained VT	<i>57</i>
Figure (16)	Drawing of ramp pacing therapy for sustained VT	<i>58</i>
Figure (17)	Drawing of ramp-plus pacing therapy for sustained VT	<i>58</i>
Figure (18)	Baseline EGMs from a patient with an ICD.	70
Figure (19)	Summary report for an episode of VF	72

Fig. No.	Title	Paģe
Figure (20)	Top: Episode report from a patient who received four shocks in rapid succession.	73
	Bottom: Inspection of the EGMs during delivery of one of the shocks confirms inappropriate therapy for sinus tachycardia.	
Figure (21)	Pocket erosion	83
Figure (22)	Intracardiac echocardiographic image showing lead with attached vegetation.	83
Figure (23)	Posteroanterior chest X-Ray showing substantial retraction of the lead due to twiddling	84
Figure (24)	Dislodgement of RV lead in a patient with dual-chamber ICD	88
Figure (25)	Stored EGM from a patient who presented with multiple ICD shocks while moving his left arm. Spurious signals are recorded that resulted from conductor fracture of the RV sensing lead	88
Figure (26)	Spurious signals could be reproduced by pressure over the lead insertion site under the left clavicle in a patient with rate-sensing lead fracture (the same patient in Fig. 23)	88
Figure (27)	Lead insulation defect	89
Figure (28)	-wave oversensing in a patient with low amplitude R-wave	91
Figure (29)	R-wave double counting in a patient with CRT-D	91
Figure (30)	Noise detection due to atrial lead dislodgement	92
Figure (31)	The bipolar EGMs during VF are relatively large but because of variability some of the EGMs were not sensed by the ICD (signal dropout)	93
Figure (32)	Underdetection due to slow VT owing to antiarrhythmic drug therapy (AADRx)	95
Figure (33)	Failure to terminate induced VF with a shock of 19.4 J due to AADRx	96
Figure (34)	Print-out of electrical storm	99
Figure (35)	Kaplan-Meier curve showing overall survival of pts treated with AADs	104