Effect Of Combination Treatment Of Candesartan And Curcumin On Traumatic Brain Injury In Mice

Thesis Presented by

Sarah Ahmed Abdallah Mohamed Baraka

B. Pharm. Sc. Ain Shams University (2012)

Demonstrator Of Pharmacology And Toxicology

Faculty Of Pharmacy, Ahram Canadian University

Submitted For The Partial Fulfillment Of Master's Degree In Pharmaceutical Sciences (Pharmacology And Toxicology)

Supervised By:

Prof. Dr. Ebtehal EL-Demerdash Zaki

Professor And Head Of Department Of Pharmacology And Toxicology Faculty Of Pharmacy, Ain Shams University

Prof. Dr. Azza Sayed Mohamed Awad

Professor Of Pharmacology And Toxicology Faculty Of Pharmacy, Al-Azhar University (Girls)

Dr. Samar Saad Eldeen Azab

Assistant Professor Of Pharmacology And Toxicology Faculty Of Pharmacy, Ain Shams University

Faculty Of Pharmacy- Ain Shams University 2017

Acknowledgements

First of all, no words can express my deep thanks to Allah, the Ever-Magnificent; the Ever-Thankful, for his help and bless. I am totally sure that this work would have never been accomplished without his help and may this work add to our good deeds to gain his kind mercifulness.

Actually, I owe a heavy debt of gratitude to my supervisor **Prof. Dr. Ebtehal El-Demerdash**, Professor of Pharmacology & Toxioclogy and Head of the Department, Faculty of Pharmacy, Ain Shams University, for her keen supervision, her valuable guidance and encouragement throughout the whole study. Her wide knowledge and her logical way of thinking have been of great value for me. I am profoundly grateful to her support and wealth of knowledge. As my teacher and mentor, she has taught me more than I could never give her credit for here. She has encouraged and challenged me throughout the process of searching and writing this thesis and never accepting anything other than my best.

I also wish to express my deep thanks and appreciations to my supervisor **Prof. Dr. Azza Awad**, Professor of Pharmacology And Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, for her kind supervision and guidance throughout this work. She is actually a great example of outstanding university professor at both the ethical and scientific levels. I thank her for accepting me as a candidate under her supervision, choosing the point of this thesis, endless co-operation, fruitful and indispensable advice, valuable guidance and for her effort in the presentation of this work as well as her interest and concern about my progress.

Indeed, I am greatly thankful to my supervisor **Dr. Samar** SaadEldeen Azab, Associate Professor of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, for her kind supervision,

endless support, as well as valuable instructions and guidance throughout this work. A very special thanks is paid to her for providing me with a good environment and facilities to complete all the practical work throughout the whole study. I would like to thank her for her experience in the process of researching, also for the time she spared during revising this thesis.

Great thanks are devoted to **Prof. Dr. Adel Bakir**, Professor of Pathology, Faculty of veterinary medicine, Cairo university, for his help in carrying out the histopathological examination, which was very helpful in representing accurate results and understanding the histopathological changes in my work.

Finally, yet importantly, I would like to express my wholehearted thanks to my beloved family and my dearest husband for their generous support they provided me throughout my entire life and particularly through the process of pursuing the master degree. Because of their unconditional love and prayers, I have the chance to complete this thesis. During this work I have collaborated with many colleagues for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work.

Sarah Ahmed Baraka

Effect Of Combination Treatment Of Candesartan And Curcumin On Traumatic Brain Injury In Mice

Sarah A. Baraka ¹, Samar Saad Eldeen Azab ², Azza Sayed Mohamed Awad ³, Ebtehal El-demerdash²

¹pharmacology &Toxicology department, faculty of pharmacy Ahram Canadian university.

ABSTRACT:

Background: Traumatic brain injury (TBI) is a severe condition and a major cause of death and disability. TBI enhances pro-inflammatory responses and neuronal loss and results in significant disability due to cognitive deficits particularly in attention, learning, memory and locomotor activity. Aim: The present experimental study was designed to assess the effect of combination treatment of curcumin and candesartan on TBI in mice. Methods: Mice were classified into six groups (Sham, TBI, TBI given the vehicle, TBI treated by curcumin, TBI treated by candesartan and TBI treated by curcumin and candesartan), n=12 each. Mice were anesthetized and then placed under a weightdrop device. The animals were killed by cervical dislocation, brains were rapidly isolated and homogenized. Results: TBI group exhibited significant increment in MDA, PGE2, TNF-Alpha, IL1-Beta, caspase -3, NF-κB, iNOS as compared to sham group and these effects were significantly ameliorated by curcumin, candesartan and their combination treatment. Also, short and long term memory, locomotor activity, TAC, SOD, BCL-2 decreased markedly in the TBI group and increased significantly by concurrent treatment with curcumin or candesartan. Furthermore, histopathological examination confirmed these findings. Conclusion: Collectively these findings indicate that curcumin and candesartan have potential anti-inflammatory, antiapoptotic and antioxidant effects beside their neuroprotective effect confirmed by the enhanced memory and locomotor activity. Accordingly, curcumin or candesartan might be employed as a therapeutic agent for TBI and the combined drug regimen succeeded in adding better effects than the individual drugs.

Keywords: Curcumin, Candesartan, Traumatic brain injury, Antioxidant, Neuroprotective, Antiapoptotic, Anti-inflammatory.

²Pharmacology &Toxicology department, faculty of pharmacy Ain-shams University.

³ Pharmacology &Toxicology department, faculty of pharmacy AL –Azhar university.

Contents

Subject	Page
List of abbreviations	III
List of tables	IX
List of figures	X
Introduction	1
1.Traumatic Brain Injury	1
2.Candesartan	30
3.Curcumin	37
Aim of the work	46
Materials and methods	47
1. Design of the work	47
2.Materials	50
3. Methods	57
3.1. Behavioral assessment	57
3.1.1. Assessment of Locomotor activity	57
3.1.2. Assessment of learning and memory	57
3.2. Determination of biochemical parameters	58
3.2.1. Determination of Lipid Peroxides	58
3.2.2. Determination of Superoxide Dismutase (SOD) Activity	60
3.2.3. Determination of total antioxidant capacity (TAC)	62
3.2.4. Determination of prostaglandin E-2 (PGE-2) content	63
3.2.5.Determination of Tumor necrosis factor alpha (TNF-α) Content	65
3.2.6. Determination of interleukin -1beta content (IL-1β)	68
3.2.7. Determination of caspase-3 content	71
3.2.8.Determination of Total proteins	74
3.2.9. Detection of BCL-2, iNOS and NF-кВ gene expression by Real time-Polymerase Chain Reaction	76
3.2.10. Histopathological examination	80

Statistical Analysis	80
Results	81
Discussion	119
Summary and conclusion	126
References	129
Arabic summary	۲_۱

List Of Abbreviation

ACE	Angiotensin converting enzyme
AIF	Apoptosis inducing factor
AMPA	α-amino-3-hydroxy-5-methyl-4-isoxazolpropionate
AngI	Angiotensin I
AngII	Angiotensin II
ANOVA	Analysis of variance
AP-1	Activator protein-1
Apaf-1	Apoptotic protease activating factor-1
ARB	Angiotensin receptor blocker
AT1R	Angiotensin type 1 receptor
ATP	Adenosine triphosphate
BBB	Blood-brain barrier
BCCAO	Bilateral common carotid artery occlusion
BCI-2	B-cell lymphoma 2
BDNF	Brain-derived neurotrophic factor
CAM	Complementary/Alternative Medicine
CaMKII	α-calcium/calmodulin-dependent kinase II
CaN	Calcineurin
Caspases	Cysteinyl aspartate–specific proteases
CBF	Cerebral blood flow

CCI	Controlled cortical impact
CDC	Centers for Disease Control and Prevention
cFPI	Central fluid percussion injury
CNS	Central nervous system
СО	Carbon monoxide
COX	Cyclooxygenase enzyme
СРР	Cerebral perfusion pressure
CREB	Cyclic AMP-response element-binding protein
CSF	Cerebrospinal fluid
CT	Computed tomography
DAI	Diffuse axonal injury
DISC	Death- inducing signaling complex
DNA	Deoxyribonucleic acid
ED	Emergency department
eNOS	Endothelial nitric oxide synthase
ET-1	Endothelin-1
ETC	Electron transport chain
FADD	Fas associated death domain
Fas	First apoptosis signal
FasL	First apoptosis signal ligand
FFH	Fall from height
FPI	Fluid percussion injury

g	Gram
GPx	Glutathione peroxidase
GSH	Glutathione
GSSG	Glutathione disulfide
НВОТ	Hyperbaric oxygen therapy
H&E	Hematoxylin and eosin
HIV	Human immunodeficiency virus
4-HNE	4-hydroxy-2-nonenal
НО-1	Heme oxygenase-1
HRP	Horseradish peroxidase
IBD	Inflammatory bowel disease
ICAM-1	Intercellular adhesion molecule-1
ICP	Intracranial pressure
IKK	Inhibitory protein Kappa B kinase
IL-10	Interleukin-10
IL-1R1	Interleukin-1 receptor 1
IL-1Racp	IL-1R-accessory protein
IL-1β	Interleukin- 1beta
IL-6	Interleukin-6
IL-8	Interleukin-8
iNOS	Inducible nitric oxide synthase
IRAK	IL-1 receptor-associated kinase

IRI	Ischemia/reperfusion injury
IκB	Inhibitory protein Kappa B
J	Joule
5-LOX	5-lipoxygenase
LPS	Lipopolysaccharide
LTD	long-term depression
LTP	long-term potentiation
MAPK	Mitogen-activated protein kinase
MCs	Mesangial cells
MCAO	Middle cerebral artery occlusion
MDA	Malondialdehyde
МНС	Major histocompatibility complex
MMPs	Matrix metalloproteinases
mPTP	Mitochondrial permeability transition pore
MPTP	1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin
MR	Mineralocorticoid receptor
MRI	Magnetic resonance imaging
mRNA	Messenger ribonucleic acid
MVC	Motor vehicle collision
MWM	Morris water maze
NAC	N-acetylcysteine
NAD	Nicotinamide adenine dinucleotide

NADH	Nicotinamide adenine dinucleotide (reduced form)
NADPH	Nicotinamide adenine dinucleotide phosphate
NBT	Nitroblue tetrazolium
NF-κB	Nuclear factor kappa-B
NIK	Nuclear factor kappa-B -inducing kinase
NLS	Nuclear localization signals
NMDA	N-methyl-D-aspartate
nNOS	Neuronal nitric oxide synthase
NO	Nitric oxide
NOS	Nitric oxide synthase
OD	Optical density
8-OHdG	8-hydroxy-2'-deoxyguanosine
PCD	Programmed cell death
PEG-SOD	Polyethylene glycol-conjugated superoxide dismutase
PGE-2	Prostaglandin E-2
PLA2	Phospholipase A2
PMs	Phenazine methosulphate
PPARγ	Peroxisome proliferator-activated receptor-gamma
qPCR	Quantitative polymerase chain reaction
RAS	Renin-angiotensin system
RIP	Receptor interacting protein
RNS	Reactive nitrogen species

ROIs	Reactive oxygen intermediates
ROS	Reactive oxygen species
RT-PCR	Reverse transcription-polymerase chain reaction
SEM	Standard error of mean
SOD	Superoxide dismutase
STZ	Streptozotocin
TAC	Total antioxidant capacity
TBA	Thiobarbituric acid
TBARS	Thiobarbituric acid reactive substances
TBI	Traumatic brain injury
TCA	Trichloroacetic acid
TLR	Toll-like receptor
TMB	Tetra methyl benzidine
TNFR1	Tumor necrosis factor receptor 1
TNF-α	Tumor necrotic factor- alpha
TRADD	Tumor necrosis factor receptor associated death domain
TRAF 2	TNFR- associated factor 2
UPS	Ubiquitin proteasome system
VCAM-1	Vascular adhesion molecule-1
VSM	Vascular smooth muscle
WDI	Weight drop injury

List of Tables

NO	Title	Page
M 1	Chemicals and solutions.	50
R1	Effect of curcumin, candesartan and their combination on short term memory in passive avoidance test after traumatic brain injury in mice.	82
R 2	Effect of curcumin, candesartan and their combination on long term memory in passive avoidance test after traumatic brain injury in mice.	85
R 3	Effect of curcumin, candesartan and their combination on locomotor activity in open field test after traumatic brain injury in mice.	88
R 4	Effect of curcumin, candesartan and their combination on malondialdehyde (MDA), total antioxidant capacity (TAC) and superoxide dismutase (SOD) after traumatic brain injury in mice.	91
R 5	Effect of curcumin, candesartan and their combination on prostaglandin E-2 (PGE-2), tumor necrosis factor (TNF-alpha) and interlukin1-beta (IL-1 β) after traumatic brain injury in mice.	96
R 6	Effect of curcumin, candesartan and their combination on caspase-3 and gene expression of B-cell lymphoma 2 (Bcl-2) after traumatic brain injury in mice.	101
R 7	Effect of curcumin, candesartan and their combination on gene expression of Nuclear Factor Kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) after traumatic brain injury in mice.	105
R 8	Scoring the severity of the histopathological alterations in brain tissue of different experimental groups.	117

List of Figures

NO	Title	Page
I1	Biochemical events involved in neuronal damage and cell death after TBI.	4
I 2	Schematic illustration of the key events involved in the vascular smooth muscle response to K^+ channel activation (left) or inhibition (right).	6
13	Schematic demonstration of cytotoxic and vasogenic cerebral edema.	8
I 4	Low Ca ²⁺ buffering and excitotoxicity under physiological stress and pathophysiological conditions in neurons.	9
I 5	Glutamate induces exitotoxicity that leads to ROS production and mitochondrial dysfunction.	12
I 6	Oxidative injury cascade after TBI.	13
I 7	A schematic presentation of activation of the transcription nuclear factor kappa B (NF-κB).	16
I 8	Proinflammatory signal transduction pathway in NF-kB activation and apoptosis.	17
19	Apoptotic verses narcotic cell death.	20
I 10	The energy state of the cell partly determines the mode of cell death.	20
I 11	Schematic representation of primary and secondary phases of injury leading to cognitive dysfunction following TBI.	23
I 12	The mechanism underlying the effect of TBI on BDNF levels and synaptic plasticity.	24
I 13	Weight drop injury device.	25
I 14	Schematic diagram showing the experimental setup of the controlled cortical impact (CCI) model of traumatic brain injury (TBI) with an isoflurane anaesthetized rat in situ.	26

I 15	(A) Opening of the skull bone in central fluid percussion injury (cFPI) in the midline between the lambda and bregma sutures without destroying the underlying dura. (B) Fixation of the plastic cup over the craniotomy.	27
I 16	The fluid percussion model of traumatic brain injury (TBI).	27
I 17	Chemical structure of candesartan cilexetil.	30
I 18	Physiological activation of AT1 receptors and the consequences of AT1 receptor overactivity.	35
I 19	Angiotensin II and inflammatory signal pathways in the brain.	36
I 20	Rhizomes of Curcuma longa Linn plant.	38
I 21	Chemical structure of curcuminoids: curcumin, demethoxy curcumin and bisdemethoxy curcumin.	39
I 22	Mechanism of modulation of COX-2 and LOX by curcumin.	42
M 1	Standard calibration curve of MDA.	59
M 2	Standard calibration curve of PGE-2.	64
М 3	Standard calibration curve of TNF-α.	67
M 4	Standard calibration curve of IL-1β.	70
M 5	Standard calibration curve of Caspase-3.	73
M 6	Standard calibration curve of protein.	75
R 1	Effect of curcumin, candesartan and their combination on short term memory in passive avoidance test in traumatic brain injury in mice.	83
R 2	Effect of curcumin, candesartan and their combination on long term memory in passive avoidance test in traumatic brain injury in mice.	86
R 3	Effect of curcumin, candesartan and their combination on locomotor activity in traumatic brain injury in mice.	89