

DEVELOPMENT OF THE WATER RESOURCES IN WADI QENA BASIN, EASTERN DESERT, EGYPT

A Thesis Submitted

BY

Hussien Mohammed Hussien Mohammed (B. Sc., Geology, Cairo University, 2004) (M.Sc., Geology, Ain Shams University, 2011)

For

The Ph. D. Degree in Geology (Hydrogeology)

To

Geology Department, Faculty of Science Ain Shams University

Supervisors

Prof. Dr. Ezzat. A. Korany

Professor of Hydrogeology, Geology Department, Faculty of Science, Ain Shams University

Prof. Dr. Alan, E. Kehew

Professor of Hydrogeology, Geosciences Department, Western Michigan University

Prof. Dr. Tarek. A. Aggour

Professor of Hydrogeology, Geology Department, Desert Research Center

Dr. Abdel-Mohsen, H. M. Hassanein

Assistant professor of Hydrogeology, Geology Department, Desert Research Center

Dr. Samah. M. Morsy

Lecturer of Hydrogeology, Geology Department, Faculty of Science, Ain Shams University

> Geology Department Faculty of Science Ain Shams University

> > 2017

Approval sheet

DEVELOPMENT OF THE WATER RESOURCES IN WADI QENA BASIN, EASTERN DESERT, EGYPT

A Thesis
Submitted for the requirements of the Ph.D.
Degree in Geology (Hydrogeology)
By
Hussien Mohammed Hussien

Supervision Committee:

Prof. Dr. Ezzat A. Korany

Professor of Hydrogeology, Geology Department, Faculty of Science, Ain Shams University

Prof. Dr. Tarek A. Aggour,

Professor of Hydrogeology, Geology Department, Desert Research Center

Prof. Dr. Alan E. Kehew

Professor of Hydrogeology, Geosciences Department, Western Michigan University

Assist. Prof. AbdelMohsen H. M. Hassanein

Assistant professor of Hydrogeology, Geology Department, Desert Research Center

Dr. Samah. M. Morsy

Lecturer of Hydrogeology, Geology Department, Faculty of Science, Ain Shams University

NOTE

Name of Student: Hussien Mohammed Hussien

Degree requirements: Ph.D. in Geology (Hydrogeology)

Department: Geology

Faculty: Science

University: Ain Shams

Graduate Year: 2004

M.Sc. Awarded: 2011

Head of Department: Prof. Dr. Abdel-Mohsen M. Morsy

This work is dedicated to **The soul of My Father**,

ACKNOWLEDGMENTS

First, thanks to *God* for the continuous and persistent patience and effort to complete this thesis.

A special thanks to Geology Department, Faculty of Science, Ain shams University for continuous support and encouragement.

I would like to express my deep gratitude to *Prof. Dr. Ezzat Ali Korany* (Prof. of Hydrogeology, Ain Shams University), for the supervision of the present work, reviewing the manuscript and continuous help.

I am greatly indebted to *Prof. Dr. Tarek Ali Aggour* (Prof. of Hydrogeology, Desert Research Center) who suggested, planned, supervised and guided all steps of this research project. The completion of this work was the result of his continuous support and fruitful discussion.

My deepest thanks for **Prof. Dr. Alan Kehew** (Geosciences department, Western Michigan University for his supervision and providing facilitates in Western Michigan University laboratories during my study in the external scholarship in USA.

I wish to express my sincere gratitude and thanks to *Dr. Abdel Mohsen Hassaneian Mohammed* (Asst. Prof., Desert Research Center) for his supervision, discussion, helping in all steps of the thesis and reviewing of the manuscripts.

I wish to express my sincere gratitude to *Dr. Samah Mohamoud Morsi* (Geology Department, Ain Shams University) for her continuous help and encouragement during the progress of this work and also her efforts in reviewing the manuscript.

Special thanks to *Mr. Karem Fatthi* (*NRIG*), and *Mr. Mahmoud El Ammawy* (*DRC*) for their help in the field and office works.

A special thanks and gratitude to *My Mother*, *My Wife* and *all my family members* for their kind help and encouragement during the progress of this work.

ABSTRACT

Wadi Qena basin represents a promising area in the Eastern Desert of Egypt for land reclamation and settlement of new communities. It is located between latitudes 26° 15′ 00" & 28° 15′ 00" North and between longitudes 32° 15′ 00" & 33° 30′ 33" East. The average annual precipitation over Wadi Qena basin ranges from 13.43 mm/y on the northeastern part of the study area to 2.78 mm/y on the western parts.

The present work focuses on the factors controlling the water resources development in Wadi Qena basin. It is conducted through detailed geomorphologic, geologic and hydrogeologic studies for the study area. Geomorphologically, Wadi Qena basin is divided into two main geomorphic units; the highlands and lowlands. The highlands include the Red Sea mountainous terrain, the high plateaus (El Maaza limestone and El Ababda sandstone), the low plateau and hilly area. The lowlands embrace the morphotectonic depressions, piedmont plain and drainage networks. The assessment of the flood strength and hazard degrees of Wadi Qena sub-basins indicates that Wadi Fattera sub-basin has the highest hazard degree while, Shahdeen, Jurdi and Um Solimate sub-basins have the lowest. Stratigraphically, the rock exposures along Wadi Qena basin belong to a range in age from Precambrian to Quaternary. Petrographically, Twenty-five thin sections from the exposed succession along Qena-Safaga road represents the Nubia sandstone (Abu Aggag Formation) are investigated for their petrographical constituents and the diagenetic processes. Four main microfacies association are recognized including; quartz arenite, sublitharenite, quartz wacke and pebbly quartz wacke. Compaction and cementation are the main diagenetic processes. The studied sandstone thin sections have well developed intergranular porosity in most samples ranging between 10-21%. Based on Landsat images, aeromagnetic data, geologic maps and field investigations, the area of study is structurally controlled by two main shear zones; Qena-Safaga shear zone (QS) and Najd shear zone. Their trends are northeast-southwest (NE-SW) and northwest- southeast (NW-SE), respectively. Spatial analysis of these structures refers that the surface shear zones and faults are an echo of the deep seated faults dissecting the massif belt of the Precambrian crystalline rocks and the overlying Phanerozoic strata. This situation favor the strong influences of uplift related sub-vertical faults on the

groundwater flow and aquifer connectivity in Wadi Qena basin. Hydrogeologically, four water-bearing formations are recognized in the study area. They comprise the Quaternary aquifer, the Post Nubia aquifer, Nubia sandstone aquifer, and fractured basement aquifer. The Nubia sandstone and Quaternary aquifers are the most promising water-bearing formations in Wadi Qena basin. The exploitable thickness of the Nubia aquifer is 200m. The water salinity of this aquifer ranges between 1300 mg/l to 2251mg/l.

The environmental stable isotopes (Oxygen, Deuterium) reveal four isotopic groups. These comprise; group (I) highly depleted Nubia water, group (II) modern water in fractured basement, group (III) a mixed group between Nubia water and recent water and group (IV) a mixed evaporative group between Nubia and modern waters with a considerable deviation from the global meteoric water line.

For sustainable development of the water resources, based on the present investigations, several recommendations are suggested. Among them are; the construction of a strong controlling system (dames, barriers and tunnels) to mitigate the flash floods and harvest their water in order to use in the development activities and projects. Good management of The Quaternary aquifer in Wadi Qena basin by using modern techniques of irrigation to avoid the deterioration of the soil and water. The Nubia sandstone aquifer has a good water quality. More geophysical exploration and hydrological investigation are needed especially in the downstream portion of Wadi Fattera sub-basin, where it receives a considerable recharge of meteoric and fresh water from the underlying Nubia sandstone aquifer.

CONTENTS				
ACKNOWLEDGEMENTS				
ABSTRACT				
LIST OF FIGURES.	IV			
LIST OF TABLES.	IX			
INTRODUCTION				
Location	1			
Review of Previous Work	3			
The Scope of the Present Study	7			
CHAPTER (I) GEOMORPHOLOGIC FEATURES, LANDFORMS AND HYDROLOGICAL SIGNIFICANCE				
1.1 The High Lands (Watershed areas)	11			
The Red Sea mountainous terrains	11			
The high plateaus.	14			
The low plateau	16			
The hilly area	16			
1.2 The Low Lands (Water collectors)	17			
Morphotectonic depressions	17			
Piedmont plain	19			
The drainage network	19			
1.3 The Morphometric Analysis	20			
1.4 Hydrogeological Significance	37			
1.5 Priorities of Flood Control	38			
1.6 Potential Recharge Sites	40			
1.7 Recharge Mechanism Using Dams	44			
CHAPTER (II) GEOLOGIC SETTING				
2.1. Lithostratigraphic Succession.	45			
Precambrian basement complex	48			
Wadi Qena Formation (? Albian-Cenomanian)	48			
Galala Formation (Late Cenomanian to Early Turonian)	49			
Umm Omeiyid Formation (Late Turonian)	50			
Abu Aggag Formation (Turonian-Early Coniacian)	50			

Hawashiya Formation (Coniacian-Santonian)	5
Rakhiyat Formation (Late Middle Campanian)	5
Quseir Variegated shale (Campanian)	5
Duwi Formation (Campanian-Maastrichtian)	5.
Sudr Formation (Maastrichtian)	5.
Dakhla Formation (Maastrichtian –Early Paleocene)	5
Tarawan Formation (Late Paleocene)	5
Esna Formation (Paleocene-Early Eocene)	5
Thebes Formation (Early Eocene)	5
Pliocene deposits	5
The Quaternary deposits	5
2.2 The Petrographic Description	5
Petrographic description of Abu Aggag sandstone rock unit	5
Diagenesis of Abu Aggag sandstone	6
Porosity features in the investigated sandstones	6
2.3 Surface and Subsurface Geologic Structures of Wadi Qena Basin	6
1. Delineating the surface structural features based on ratio image	6
2. Delineating deep seated faults using aeromagnetic total intensity data	7
2.4 Discussion and Results.	7
CHAPTER (III) HYDROGEOLOGICAL CONDITIONS	
3.1 Alluvium aquifer (Quaternary)	7
3.2 Carbonates and Sandstone of Post Nubia Aquifer (Eocene-Pliocene)	8
3.3 Nubia Sandstone Aquifer (Turonian-Santonian)	8
3.4 Fractured Basement Complex Aquifer (Precambrian)	9
1. Wadi Abu Sheih.	9
2. Wadi El Markh (El-Misikate Area)	9
3. Wadi El Gidami	9
4. Wadi Fattera	10
5. Wadi Umm Douqal.	10

CHAPTER (IV) HYDROGEOCHEMICAL CHARACTERISTICS OF GROUNDWATER

4.1 Hydrogeochemical Aspects of Groundwater	104
1. Groundwater salinity (TDS)	105
2. Major ions concentration.	112
3. Hypothetical salts combinations	115
4. Hydrochemical coefficients (Ion ratios)	119
5. Geochemical classification of the groundwater	124
6. Evaluation of groundwater quality	127
7. Stable isotopes	131
SUMMARY AND CONCLUSIONS	140
RECOMMENDATIONS	146
REFERENCES	149
ARABIC SUMMARY	