

Comparison between Digital Periapical Radiography and Cone-Beam Computed Tomography for the Localization of the Mental Foramen and Mandibular canal

Thesis

Submitted to the Faculty of Dentistry, Ain Shams University in Partial Fulfillment of the Requirements for Master Degree in Oral Radiology

Presented by

Naglaa Fathallah Ahmed Ahmed

B.D.S, Ain Shams University (2006) Demonstrator in Oral Radiology Department Faculty of Dentistry, Ain Shams University

Under supervision of **Dr.Mona Mahmoud Abo-elfotoh**

Assistant Professor of Oral Radiology and Diagnostic Sciences Faculty of Dentistry Ain Shams University

Dr.Mary Medhat Farid

Assistant professor of Oral Radiology and Diagnostic Sciences Faculty of Dentistry Ain Shams University

> Faculty of Dentistry Ain Shams University 2013

سورة البقرة الآية: ٣٢

Dedication

To My parents

Who made me what I am today, Thank you for already being here

70 My Dear Husband & My Sweet daughters

For giving me all the support that I needed

To my sweet sister

The best gift from my God

ACKNOWLEDGEMENT

First of all, thanks to "God" without his help, this work could not be accomplished.

I am greatly indebted to **Dr.Mona Abo-elfotoh**, Assistant Professor of Oral Radiology and Diagnostic Science, Faculty of Dentistry, Ain Shams University, for her precious guidance and continuous encouragement throughout this work.

Also, I would like to express my deepest appreciation and gratitude to **Dr.Mary Meshat Fario**, Assistant Professor of Oral Radiology and Diagnostic Science, Faculty of Dentistry, Ain Shams University, for her great help, continuous guidance and valuable suggestions throughout this work.

I wish to extend my deep thanks to all staff members and technicians of **ORAL RADIOLOGY DEPARTMENT,** Faculty of Dentistry-Ain Shams University, for their great help and continuous efforts in providing the facilities necessary to produce this work.

Special thanks are introduced to all the members of (El SERAFY Scan Center) for their great cooperation and help during my work

CONTENTS

List of Figures	
List of Tables	V
List of Abbreviations	
Introduction & Review of literature	1
Aim of the study	63
Materials and methods	64
Sample presentation	76
Results	90
Discussion	105
Summary and Conclusions	119
References	122
Arabic summary	

LIST OF FIGURES

Fig	Figure Title	Pg.
1	The appearance of the mental foramen on panoramic	3
	radiographs: classification by Yosue and Brooks,	
	(1989)	
2	Anatomical variations of the mental foramen position	5
	in the horizontal plane in relation to the roots of teeth	
3	Variations in the vertical position of the mental	7
	foramen in relation to premolars apex: classification by	
	Fishel et al., (1976)	
4	Emergence patterns of the mental canal and mental	9
	foramen opening	
5	The anterior loop (AL) of the mental nerve: length	11
	variations from the most anterior loop point to mental	
	foramen	
6	The origin of the trigeminal nerve from the trigeminal	13
	ganglion (Gasserian ganglion) and its division into	
	Ophthalmic,Maxillary,Mandibular nerves	
7	Branching patterns of the IAN: classification by	16
	Kieser et al., (2005)	
8	Schematic representation of a digital image	25
9	Direct digital system	27
10	Semi-direct digital system	27
11	Digital detectors use either a direct technique or an	28
	indirect technique for converting x rays into an electric	
	charge	

12	Bucket brigade fashion of CCD	30
13	Indirect-conversion detectors	33
14	Adjustment of brightness and contrast in digital radiography	
15	Subtraction radiography	38
16	CT and CBCT acquisition geometries	43
17	Comparison of volume data sets of CT and CBCT	46
18	Dry mandible coded with a letter and the Gutta percha point fixed to its outer surface, the tapered edge is directed toward the distal	72
19	Imaging of the mandible with the paralleling imaging technique using the film holder	72
20	Digital radiographic system (Digora software)	73
21	CBCT imaging of the mandible using Planmeca Promax machine	73
22	The artifact made by gutta percha marker	74
23	Electronic digital caliper	74
24	Hack Saw used in cutting the dry mandibles	75
25	Mandible pieces after anterior and posterior slicing	75
26	Measuring craniocaudal (CC) distance of the mental foramen on digital radiographic image	76
27	Adjustment of the coronal plane on the 3D image for the measurements of the mental foramen	77
28	Craniocaudal measurement of the mental foramen using the sagittal and axial lines as an aid in measurement Lingual measurement of the mental foramen	78 79
49	Lingual incasulcincin of the mental foramen	19

30	Adjustment of the coronal plane on the 3D image for		
	the measurements of the mandibular canal		
31	Mandibular canal on the resultant coronal cut		
32	Craniocaudal measurement of the mandibular canal		
33	Lingual measurement of the mandibular canal		
34	Buccal measurement of the mandibular canal		
35	Mapping of the panoramic image on the axial view		
36	Reconstructed panoramic image showing craniocaudal measurements of the mental foramen and the	86	
	mandibular canal		
37	Cranio-caudal measurement of the mental foramen	87	
	between the upper surface of the marker and the		
	alveolar crest		
38	Lingual measurement of the mental foramen between	88	
	the upper surface of the marker at the mental foramen		
	and the lingual cortical plate		
39	Measurements of the mandibular canal	89	
40	Mean value of CC measurements of the MF real	93	
	measurements and different techniques		
41	Mean value of CC measurements of the MC real	95	
	measurements and different techniques		
42	Mean value of buccal and lingual measurements of the	97	
	MF and MC regarding real measurements and different		
	techniques		
43	Scatter plot diagrams showing correlation between real	99	
	measurements and different techniques measurements		

44	Mean percentage error of different techniques	101
45	Mean percentage error of different sites on CBCT	103
	coronal cross sectional cuts	
46	Mean percentage error of different sites on CBCT	104
	panoramic reconstructed views	

LIST OF TABLES

No.	Title	Page
(1)	Paired t-test for repeated measures to compare mean	92
	and standard deviation values of MF cranio caudal	
	measurements with different techniques	
(2)	Paired t-test for repeated measures to compare mean	94
	and standard deviation values of MC cranio caudal	
	measurements with different techniques	
(3)	Paired t-test for repeated measures to compare mean	96
	and standard deviation values of real and CBCT	
	measurements regarding buccal and lingual	
	measurements of MF and MC	
(4)	Correlation between real measurements, digital,	98
	CBCT coronal cuts and reconstructed panoramic	
	views	
(5)	Mean percentage error of different techniques	100
(6)	Mean percentage error of different sites on CBCT	102
(7)	Mean percentage error of different sites	104
	measurements on CBCT panoramic reconstructed	
	views	

LIST OF ABBREVIATIONS

2D	Two Dimensional
3D	Three Dimensional
ADC	Analog to digital converter
AL	Anterior loop
ALARA	As Low As Reasonably Achieved
AMF	Accessory mental foraminae
CBCT	Cone beam computed tomography
CBVT	Cone beam volumetric tomography
CC	Cranio-Caudal
CCD	Charge coupled device
CMOS	Complementary metal oxide semiconductor
CR	Computed radiography
CT	Computed tomography
DDR	Direct digital radiography
DR	Direct imaging
DSR	Digital subtraction radiography
EJS	External jaw surface
FOV	Field of view
FPD	Flat panel detector
GP	Gutta Percha
HU	Hounsfield Units

IAN	Inferior alveolar nerve
IANB	Inferior alveolar neurovascular bundle
IDR	Indirect digital radiography
IP	Image plate
Lp/mm	Line pair per mm
MC	Mandibular canal
MDCT	Multi detector computed tomography
MF	Mental foramen
MIC	Mandibular incisive canal
MIP	Maximum intensity projection
MN	Mental nerve
MPR	Multiplanar reformation
MRI	Magnetic resonance imaging
MSCT	Multi scanner computed tomography
PSL	Photostimulted luminescence
PSP	Photostimulable phosphor imaging plate
ROI	Region of interest
SPS	Storage phosphor screen
TFT	Thin film transistor
TMJ	Temporo-mandibular joint

INTRODUCTION AND REVIEW OF LITERATURE

Essential to surgical treatment is the knowledge of the anatomical relationships between vital structures in order to better ensure a favourable treatment outcome. For most of history, determining these relationships has relied upon the knowledge and experienced surgical skills of the operators to offset the lack of transparency of the human body and any unforeseen surgical difficulties encountered had to be managed in real time (*Danforth and Chenin*, 2009).

However, with the discovery of x-rays and the subsequent development of conventional tomographic imaging, computed tomography (CT) and magnetic resonance imaging (MRI), the human body became transparent and interpretation and treatment planning entered into the third dimension (*Danforth and Chenin*, 2009).

Anatomy of the Mental Foramen:

Shape and size of the mental foramen (MF):

The MF can be round or oval. Its diameter ranges from 2.5 to 5.5 mm (*Juodzbalys and Wang*, 2010). Neiva et al., (2004) found that the mean height of the MF was 3.47 ± 0.71 mm (range

2.5 to 5.5 mm) and the mean width was 3.59 ± 0.8 mm (range 2 to 5.5 mm) after measuring 22 Caucasian skulls.

Apinhasmit et al., (2006) examined 106 Thai adult skulls and found that mean MF width was 2.80 ± 0.70 mm. **Gershenson et al., (1986)** studied 525 dry mandibles and 50 cadaver dissections and found that MF shape was round in 34.48% of cases with an average diameter of 1.68 mm and oval in 65.52% with an average long diameter of 2.37 mm.

Yosue and Brooks, (1989) studied the appearance of the MF on panoramic radiographs and classified it as a continuous, separated, diffuse, or unidentified type. This is illustrated in Fig. (1).

Type I, a continuous type in which the mental canal was connected to the mandibular canal; Type II, a separated type in which the mental canal does not show continuity with the mandibular canal; Type III, a diffuse type in which the foramina could be identified but with indistinct borders; Type IV, an unidentified type in which the mental foramina could not be identified on the panoramic radiographs (*Kuzmanovic et al.*, 2003).

In a sample of 297 patients, the most frequent appearance was separated (43%), followed by diffuse (24%), continuous (21%), and unidentified (12%). The mean diameter of the foramen was stated at 3.5 mm width (*Juodzbalys et al.*, 2010).

Fig. (1): The appearance of the mental foramen on panoramic radiographs. A = continuous; \mathbf{B} = separated; \mathbf{C} = diffuse; \mathbf{D} = unidentified type (Juodzbalys et al., 2010).

Mbajiorgu et al., (1998) found different shapes of the MF in 32 mandibles of adult Black Zimbabweans. They found 14 mandibles out of 32 were round (43.8%) and 18 mandibles out of the same 32 were oval (56.3%). **Igbigbi and Lebona, (2005)** from study on 70 Malawian mandibles concluded that the majority of MF was oval in shape.

In black Tanzanian individuals, the shape of the MF was oval in 54% and rounded in 46%. In Jordanian population, the majority of foramina were round in shape (*Juodzbalys et al.*, 2010).