

Modulation of Immune Disorders Induced-Arthritis in γ - Irradiated Rats

A Thesis

Submitted for the award of the degree of Ph.D (Biochemistry)

Presented by

Noura Magdy Salem Thabet

M.Sc. in Biochemistry, 2008 National Center for Radiation Research and Technology, Atomic Energy Authority

> Faculty of Science Ain Shams University 2013

Modulation of Immune Disorders Induced-Arthritis in γ- Irradiated Rats

A Thesis

Submitted for the award of the degree of Ph.D (Biochemistry)

Presented by

Noura Magdy Salem Thabet

M.Sc. in Biochemistry, 2008 National Center for Radiation Research and Technology, Atomic Energy Authority

Under Supervision of

Prof. Dr. Ahmed Osman Mostafa

Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University.

Prof. Dr. Khaled Shaaban Mahmoud Azab

Professor of Biochemistry, Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority

Prof. Dr. Ahmed Ibrahim El-Sayed El-Batel

Professor of Biological science and Biotechnology, Drug Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority

Dr. Abdel Rahman Badr El-Din Abdel Ghaffar

Lecturer of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University.

Faculty of Science Ain Shams University 2013

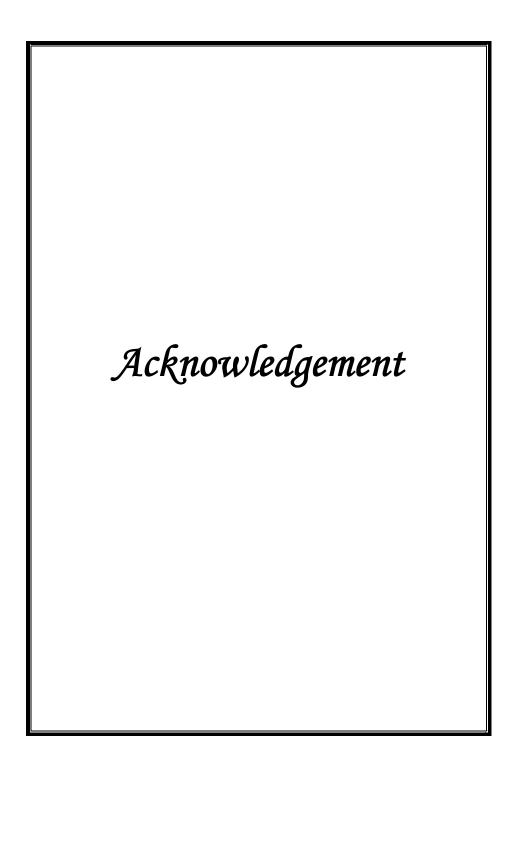
Biography

Name of student: Noura Magdy Salem Thabet

Date of graduation: 2002, Faculty of Science, Biochemistry

Department, Ain Shams University.

Degree awarded: M.Sc. in Biochemistry, 2008, Faculty of


Science, Biochemistry Department, Helwan

University.

Grade occupation: Assistant Lecture in Radiation Biology

Department, National Center for Radiation Research and Technology, Atomic Energy

Authority

Acknowledgement

Special thanks to **Prof. Dr. Khaled Shaaban Mahmoud Azab,** Professor of Biochemistry, Radiation Biology
Department, National Center for Radiation Research and
Technology, Atomic Energy Authority for suggesting the point
and planning the work, his unlimited helps, scientific advices,
facilities offered during the practical work, review the
manuscript and many valuable discussions and professional
guidance during the thesis preparation.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Ahmed Osman Mostafa**, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for sponsoring the thesis, kind encouragement and valuable advices in reviewing the manuscript and throughout the period of investigation.

My deepest gratitude and appreciation to **Prof. Dr.**Ahmed El-Batal, Professor of Biological science and Biotechnology, Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority for his kind supervision, unlimited helps, technical assistance and providing all laboratory facilities for the preparation of the supplement.

I wish also to express my sincere thanks to **Dr. Abdel Rahman B. Abdel Ghaffar,** Lecturer of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for his kind supervision, unlimited helps, kind encouragement, reading, reviewing and precious comments on the manuscript.

Special thanks to my colleagues in the Radiation Biology and Drug Radiation Research Departments (NCRRT).

Contents

List of Abbreviations	i
List of Figures	iii
List of Tables	vi
Abstract	vii
Introduction and Aim of the Work	1
Review of Literature	6
Oxidative Stress: Basic Mechanism, Functional Effect and Pathological Considerations	6
Radiation Exposure Induced Oxidative Stress and Biological Modifications	16
Inflammation: Recruitment, Types, Mediators and Implication	20
Lovastatin, Selenim (Lov-Se) Combating Arthritis	27
Material and Methods	32
I. Materials	32
A. Strains	32
B. Reagents	32
1- Reagents for lovastatin production	32
2- Reagents for Selenium Nanoparticle	32
3- Reagents for Thiobarbituric Acid Reactive Substances assay	32
4-Reagents for Protein Oxidation (Carbonyl Group) assay	33
5- Reagents for Nitric Oxide assay	33

6- Reagents for Selenium Content assay	33
7- Reagents for Xanthine Oxidoreductase assay	34
8- Reagents for Superoxide Dismutase assay	34
9- Reagents for Catalase assay	34
10- Reagents for Glutathione Peroxidase assay	35
11- Reagents for Reduced Glutathione assay	35
12- Reagents for Total Protein Content assay	36
13- Reagents for Tumor Necrosis Factor- Alpha assay	36
14- Reagents for C-reactive protein assay	37
15- Reagents for Rheumatoid Factor assay	38
C. Experimental Animals	40
D. Induction of Arthritis with an Adjuvant	40
E. Radiation Facility	40
F. Experimental Set Up:	40
G. Biological Sample Preparation	42
II. Methods	43
A. Treatment preparation:	43
1-Lovastatin	43
2- Selenium Nanoparticle	45
B. Biochemical Measurements	46
I. Oxidative Parameters:-	46
1-Determination of Thiobarbituric Acid Reactive	46
Substances	
2-Determination of Protein Oxidation (Carbonyl	47
Group)	
3-Determination of Nitric Oxide	49
4-Determination of Selenium Content	50 52
II. Antioxidant Parameters:-	52 53
1-Determination of Xanthine Oxidoreductase Activity	52

2-Determination of Superoxide Dismutase Activity	53
,	
3-Determination of Catalase Activity	54
4-Determination of Glutathione Peroxidase	55
5-Determination of Reduced Glutathione	57
6-Determination of Total Protein Content	57
III. Inflammatory Markers:-	58
1-Determination of Tumor Necrosis Factor- Alpha	58
2-Determination of C-reactive protein	60
3-Determination of Rheumatoid Factor	62
Statistical analysis	63
Results	64
Discussion	110
Summary and Conclusion	126
References	135
Arabic Summary	
Arabic Abstract	

List of Abbreviations

CAMs Cell Adhesion Molecules

CAT Catalase

CFA Complete Freund's Adjuvant

CRP C-Reactive Protein

D.F Dilution Factor

ELISA Enzyme-Linked Immunosorbent Assay

GSH Reduced Glutathione

GSH-Px Glutathione Peroxidase

H₂O₂ Hydrogen Peroxide

HMG-CoA 3-Hydroxy-3-Methylglutaryl-Coenzyme A

HOCl Hypochlorous Acid

ICAM-1 Intercellular Adhesion Molecule 1

IL Interleukin

LFA-1 Lymphocyte-Function-Associated Antigen-1

Lov-Se Nano Selenium-Lovastatin

LPO Lipid Peroxidation

LSD Least Significant Difference

NO Nitric Oxide

O₂ Superoxide Anion
OH Hydroxyl Radical

RA Rheumatoid Arthritis

RF Rheumatoid Factor

RNS Reactive Nitrogen Species
ROS Reactive Oxygen Species

Se Selenium

SOD Superoxide Dismutase

TBARS Thiobarbituric Acid Reactive Substances

TCA Trichloroacetic Acid

TNF-α Tumor Necrosis Factor- alpha

XDH Xanthine Dehydrogenase

XO Xanthine Oxidase

XOR Xanthine Oxidoreductase

γ-irradiation Gamma Irradiation

List of Figures

Figure (1):	The chemical structure of lovastatin	65
Figure (2):	HPLC chromatogram of (a) standard lovastatin and (b) sample lovastatin	65
Figure (3):	IR- spectrum of lovastatin	66
Figure (4):	1H-NMR- spectrum of lovastatin	66
Figure (5):	DLS of selenium nanoparticle	67
Figure (6):	TEM of selenium nanoparticle	67
Figure (7):	TBARS contents in heart of different animal groups.	72
Figure (8):	Protein carbonyl contents in heart of different animal groups.	72
Figure (9):	NO contents in heart of different animal groups.	73
Figure (10):	Se contents in blood of different animal groups.	73
Figure (11):	XDH activity in heart of different animal groups.	76
Figure (12):	XO activity in heart of different animal groups.	76
Figure (13):	SOD activity in heart of different animal groups.	81
Figure (14):	CAT activity in heart of different animal groups.	81
Figure (15):	GSH-Px activity in heart of different animal groups.	82

Figure (16):	GSH contents in heart of different animal groups.	82
Figure (17):	TNF- α level in serum of different animal groups.	86
Figure (18):	CRP level in serum of different animal groups.	86
Figure (19):	RF level in serum of different animal groups.	87
Figure (20):	TBARS contents in heart of different animal groups.	92
Figure (21):	Protein carbonyl contents in heart of different animal groups	93
Figure (22):	NO contents in heart of different animal groups.	93
Figure (23):	Se contents in heart of different animal groups.	94
Figure (24):	XDH activity in heart of different animal groups.	97
Figure (25):	XO activity in heart of different animal groups.	97
Figure (26):	SOD activity in heart of different animal groups.	102
Figure (27):	CAT activity in heart of different animal groups.	103
Figure (28):	GSH-Px activity in heart of different animal groups.	103
Figure (29):	GSH contents in heart of different animal groups.	104

Figure (30):	TNF- α level in serum of different animal	108
	groups.	
Figure (31):	CRP level in serum of different animal groups.	108
Figure (32):	RF level in serum of different animal groups.	109

List of Tables

Table (1):	The change in heart TBARS, protein carbonyl, NO and blood Se contents in of different animal group	71
Table (2):	The change in XDH and XO activities in heart of different animal groups.	75
Table (3):	The change in SOD, CAT and GSH-Px activities and GSH contents in heart of different animal group.	80
Table (4):	The change in TNF-α, CRP and RF level in serum of different animal groups	85
Table (5):	The change in heart TBARS, protein carbonyl, NO and blood Se contents in of different animal groups	91
Table (6):	The change in XDH and XO activities of heart in different animal groups.	96
Table (7):	The change in SOD, CAT and GSH-Px activities and GSH contents of heart in different animal groups	101
Table (8):	The change in TNF-α, CRP and RF level of heart in different animal groups	107