

Ain Shams University
Faculty of Medicine
Department of Anaesthesiology,
Intensive care and pain management

Perioperative Insulin Resistance

Essay

Submitted for Partial Fulfillment of Master Degree in Anaesthesia

> By Sara Hossameldin Taha Mohammed M.B.B.CH

> > Supervised by

Prof. Dr. Mohamed Ali Ahmed Zaghloul

Professor of Anaesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University

Dr. Amr Mohammed Abdelfattah

Assistant Professor of Anaesthesiology, Intensive Care Medicine & Pain Management, Faculty of Medicine, Ain Shams University

Dr. Mohammed Youssef Khashaba

Lecturer of Anaesthesiology, Intensive Care Medicine & Pain Management, Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University 2013

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mohamed Ali Ahmed Zaghloul**, Professor of Anaesthesiology and Intensive Care for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Amr**Mohammed Abdelfattah, Assistant Professor of

Anaesthesiology and Intensive Care for his sincere efforts

and fruitful encouragement.

I am deeply thankful to **Dr. Mohammed Youssef Khashaba**, Lecturer of Anaesthesiology

and Intensive Care for his great help, outstanding

support, active participation and guidance.

Sara Hossameldin

List of Contents

	Title	Page No.
-	Introduction	1
•	Aim of the work	3
•	Pathophysiology of Insulin Resistance	4
•	Anaesthesia And Diabetic Patients	34
•	Perioperative Management of Diabetic Patient	ts69
•	Summary	98
•	References	100
•	Arabic summary	

List of Tables

Table No.	Title Page I	No.
Table (1):	Pogulation of inquity valoues in humans	77
• •	Regulation of insulin release in humans	1
Table (2):	Alterations in vascular endothelium	0.0
m-1.1 (e)	associated with insulin resistance	26
Table (3):	Metabolic abnormalities associated with	22
	metabolic syndrome	
Table (4):	Etiologic types and stages of DM	37
Table (5):	Etiologic classification of diabetes	
	mellitus	
Table (6):	Criteria for diagnosis of diabetes mellitus	45
Table (7):	Diagnosis of GDM with a 100-g or 75-g	
	glucose load	48
Table (8):	American Diabetes Association criteria to	
	define populations at high risk for	
	diabetes	50
Table (9):	Basic preoperative evaluation of diabetic	
\- <i>\</i>	surgical patients	71
Table (10):	Goldmann risk index	
Table (11):	Surgery specific risk	
Table (12):	Insulin types	
Table (12):	Variable rate IV insulin infusion	
Table (14):	Advantages and disadvantages of	00
	regional anaesthesia for diabetic patients	90

List of Figures

Fig. No.	Title F	Page No.
Figure (1):	Human insulin molecule	4
Figure (2):	Approximate insulin secretion different glucose levels	
Figure (3):	Pathophysiology of insulin resistance.	14
Figure (4):	Pathogenesis of Type 1 Diabetes	39
Figure (5):	Pathogenesis of type 2 Diabetes	40
Figure (6):	A positive "prayer sign"	55
Figure (7):	Hypoglycemia in diabetes	57
Figure (8):	Preoperative management for patient on oral drugs and/or insulin	

List of Abbreviations

Abb. Full term

ACTH	Adrenocorticotrophic hormone	
ADA	American diabetes association	
AGEs	Intracellular advanced glycation end products	
BUN	Blood urea nitrogen	
CAD	Coronary artery disease	
CRP	C-reactive protein	
CVD	Cardiovascular disease	
DAN	Diabetic autonomic neuropathy	
DKA	Diabetic ketoacidosis	
DM	Diabetes mellitus	
DM-1	Type 1 diabetes	
DM-2	Type 2 diabetes	
EASD	European association for the study of diabetes	
FFA	Free fatty acid	
FPG	Fasting plasma glucose	
GAD65	$Glutamic\ acid\ decarboxylase\ autoantibodies$	
GDM	Gestational diabetes	
GFR	Glomerular filtration rate	
GIK	Glucose insulin-potassium	
GLUT4	Glycose transporter 4	
HbA1C	Glycated hemoglobin	
HDL	High density lipoprotein	
HIV	Human immunodeficiency virus	
IAs	Insulin autoantibodies	
ICAs	Islet cell autoantibodies	

IDDM	Insulin dependent diabetes mellitus	
IDF	International diabetes federation	
IFCC	International federation of clinical chemistry and laboratory medicine	
IFG	Impaired fasting glucose	
IFT	Impaired glucose tolerance	
IGF-BP	Insulin-like growth factors binding protein	
IgG	Immunoglobulin G	
IL-1	Interleukin I	
IL6	Interleukin 6	
<i>IMGU</i>	Impaired insulin mediated glucose uptake	
IR	Insulin resistance	
IV	Intravenous	
LADA	Latent autoimmune diabetes in adult	
MAPK	Mitogen activated protein kinase	
MODY	Maturity-onset diabetes in youth	
NIDDM	Non insulin-dependent diabetes mellitus	
NMR	Nuclear magnetic resonance	
NO	Nitrous oxide	
OGTT	Oral glucose tolerance test	
PAJ-1	Plasminogen activator inhibitor-1	
PONV	Post operative nausea and vomiting	
SJS	Stiff joint syndrome	
TG	Triglyceride	
TIVA	Total intravenous anaesthesia	
TNF-a	Tumor necrosis factor α	
TZD	Thiazolidinediones	
VLDL	Very low density lipoprotein	
WHO	World Health Organization	

Introduction

Plective surgery causes a marked, transient reduction in insulin sensitivity. The degree of the reduction is related to the magnitude of the operation, the type and duration of surgery performed, and perioperative blood loss. Also the degree of postoperative insulin resistance (IR) has significant influences on the length of hospital stay (*Throll et al.*, 1999).

Development of hyperglycemia after major operations is very common and is modulated by many factors. These factors include perioperative metabolic state, intraoperative management of the patient, and neuroendocrine stress response to surgery (*Inzucchi*, 2000).

Insulin resistance (IR) is a state in which there is an insensitivity of the peripheral tissue (e.g., muscle, liver, adipose tissue) to the effect of insulin. There is a threefold increase in risk for coronary artery disease and stroke in subjects with IR when compared with individuals who have normal glucose tolerance (Isomaa et al., 2001).

Acute insulin resistance can develop perioperatively and contribute significantly to hyperglycemia. Hyperglycemia is associated with poor outcomes in postsurgical patient. IR is a feature of the catabolic reactions after major surgery because the postoperative increase in the circulating levels of catabolic

1

hormones increases the production of glucose and weakens its peripheral use (Schricker et al., 2005).

The underlying pathophysiology is not yet fully understood, although hyperglycemia predicts post-surgical morbidity and mortality. Apparently perioperative insulin resistance has a complex pathophysiology and tissue-specific differences have to be considered. Multiple causative factors and intracellular signalling pathways have been identified driving the development of systemic perioperative insulin resistance (Thorell et al., 1999).

AIM OF THE WORK

o highlight causes and mechanisms of insulin resistance development in the perioperative period. Also, we will discuss the perioperative management of diabetic patients.

PATHOPHYSIOLOGY OF INSULIN RESISTANCE

Insulin Hormone:

Insulin is secreted by the B-cells of pancreatic islets in response to elevation in blood glucose levels. It is a protein consisting of 51 amino acids contained within two peptide chains; α chain and β chain. The chains are connected by two disulphide bridges (figure 1). In addition, there is an intra-chain disulphide bridge that links positions 6 and 11 in the (a) chain. The molecular weight of human insulin is 5808 (Eckel et al., 2005).

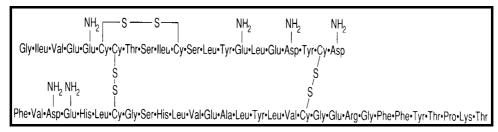


Figure (1): Human insulin molecule (Guyton and Hall, 2006).

Insulin Secretion:

When insulin is secreted into the blood, it circulates almost entirely in an unbound form; it has a plasma half-life that averages only about 6 minutes, so that it is mainly cleared from the circulation within 10 to 15 minutes. Except for that portion of the insulin that combines with receptors in the target cells, the remainder is degraded by the enzyme insulinase mainly in the liver, to a lesser extent in the kidneys and muscles, and slightly in most other tissues (Guyton and Hall, *2006*).

The human pancreas secretes 40-50 units of insulin per day in normal adults. The basal concentration of insulin in the blood of fasting human averages 10 Mu/ml (0.4ng/ml). In normal subjects, insulin seldom rises above 100Mu/ml after standard meals. The increase in peripheral insulin concentration begins 8-10 minutes after ingestion of food and reaches peak concentration in peripheral blood by 30-45 minutes (figure 2). This is followed by a rapid decline in postprandial blood glucose level, which returns to baseline values by 90-120 minutes (*Karam*, 1997).

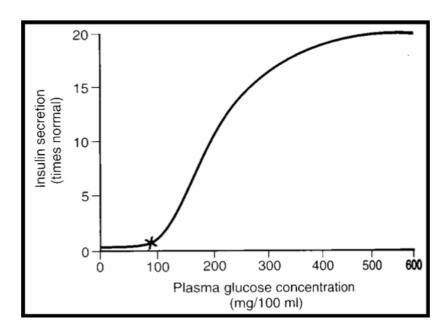


Figure (2): Approximate insulin secretion at different glucose levels (Guyton and Hall, 2006).

Glucose is known to enter β-pancreatic cells by diffusion, which is facilitated by a specific membrane protein termed glucose transporter-2. By virtue of its relatively low affinity for glucose, this protein more effectively facilitates transport of glucose during hyperglycemia than at the lower levels of blood glucose as during fasting state (Goldfine and Pilch, 1992).

Factors involved in regulation of insulin secretion, can be divided into three categories (table 1): *Direct stimulants*, which are known to stimulate insulin release directly. Amplifiers, which appear to potentiate the response of the β -cell to glucose and **inhibitors** of insulin release. The action of the amplifier substances, many of which are gastrointestinal hormones

stimulated by ingestion of meals, explains the observation that insulin response to an ingested meal is greater than the response of intravenously administered substrates (Karam, 1997).

Table (1): Regulation of insulin release in humans (Karam, *1997)*.

Stimulants of insulin release	Glucose, mannose.Leucine.Vagal stimulation.Sulfonylureas
Amplifiers of glucose- induced insulin release	 I. Enteric hormones: Glucagon-like peptide. Gastrin inhibitory peptide. Cholecystokinin. Secretin, gastrin. Neural amplifiers:
Inhibitors of insulin release	 Neural: α-adrenergic effect of catecholamines. Humoral: somatostatin. Drugs: Diazoxide, phenytoin, vinblastine, colchicines.