A Comparative Study Between Microskin Autograft, Cultured Autologous Keratinocytes and Meshed Split Thickness Skin Autograft, in Burn Wound Coverage

Thesis

Submitted for partial fulfillment of MD degree in Plastic and Reconstructive Surgery

By

Sameh Adel Desawy Bakry

Assistant Lecturer of Plastic and Reconstructive surgery Faculty of Medicine- Ain Shams University

Under Supervision of

Prof. Dr. Abd El Aziz Hanafy Abd El Aziz

Professor of Plastic and Reconstructive surgery Faculty of Medicine-Ain Shams University

Prof. Dr. Samy Hosny Hamed

Professor of Histology
Faculty of Medicine-Ain Shams University

Prof. Dr. Salah Nasser Mohammed

Professor of Plastic and Reconstructive surgery Faculty of Medicine- Ain Shams University

Prof. Dr. Basim Mohamed Zaki Salem

Assistant Professor of Plastic and Reconstructive surgery Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2011

<u>Acknowledgement</u>

First and last; all thanks to **Allah** who helped me to accomplish this work.

I would like to express my deep appreciation to **Prof. Abd El Aziz Hanafy Abd El Aziz**, professor of plastic surgery for his generous support and guidance which was the primary motive for completing this task.

I am also deeply impressed and wish to express my heartfelt thanks to **Prof. Samy Hosny Hamed,** professor of Histology for his guidance, comments, and true help in this work.

I would like also to express my deep thanks and respect to **Prof. Salah Nasser Mohamed**, professor of plastic surgery and **Prof. Basim**Mohamed Zaki, assistant professor of plastic surgery for honoring me by supervising this work and for giving me valuable advices and help.

Also many thanks to all staff of **Plastic** Surgery Department who were all very helpful in accomplishing this work.

I pray for mercy and forgiveness for my father **Prof.** Adel **Desawy** Bakry, professor of pharmacology who had hoped to witness this day and keeping to him all the gratitude and sincere thanks to all what he has done for me over my life to get this day.

I would like to express my great love and gratitude to all members of my family; especially my mother, my wife and my kids as they supported me deeply and helped me to get this work out to light.

CONTENTS

		Page
•	Introduction	1
•	Aim of the work	6
•	Review of literature:	
	- Burn injury	7
	- Local and general effects of burn	18
	- Burn wound coverage	26
•	Patients and Methods	43
•	Results	56
•	Discussion.	80
•	Summary and Conclusion	90
•	References	94
•	Arabic Summary	113

LIST OF FIGURES

		Page
Figure (1):	Lund-Browder chart	11
Figure (2):	Scald burn	12
Figure (3):	Differences between true high tension	14
	burn and flash burn	
Figure (4):	Contact burn from a hot iron	14
Figure (5):	Chemical burn due to spillage of	15
	sulphuric acid	
Figure (6A):	Jackson's burn zones and the	19
	effects of adequate and	
	inadequate resuscitation	
Figure (6B):	Clinical image of burn zones. There is	20
	central necrosis surrounded by zones of	
	stasis and of hyperaemia	
Figure (7):	Systemic changes that occur after	25
	a burn injury	
Figure (8):	Harvesting STSG of 1/10 of the recipient	46
E' (0)	area.	47
Figure (9):	Meshing of the graft at 1:4 ratios.	47
Figure (10):	Incising the graft to small pieces 1X1	47
Figure (11).	mm in a Kidney dish full of saline.	40
Figure (11):	Lifting the piece of cloth gently to get rid	48
	off the saline	
Figure (12):	The cloth is covered by vaseline gauze to	48
	which the microskin grafts adheres.	
Figure (13):	Injection of keratinocytes cell suspension	54
	underneath a tightly fixed homograft to	
	the recipient area.	
Figure (14A):	Full thickness burn of left arm posterior	67
- 18u1 v (1 111)	view.	

Figure (14B):	Left arm after surgical escharectomy.	67
Figure (14C):	Left arm after coverage by meshed	67
	grafts.	
Figure (15A):	Deep dermal burn of the posterior trunk.	68
Figure (15B):	Coverage of deep dermal burn by	68
	meshed grafts	
Figure (16A):	Photomicrograph showing normal	69
	histological characteristics, represented	
	by epidermal and dermal layering.	
Figure (16B):	Large magnification of previous photo	69
	micrograph.	
Figure (17A):	Photomicrograph, notice the ill defined	70
	dermal-epidermal junction and hair	
	follicle.	
Figure (17B):	Large magnification of previous photo	70
	micrograph.	
Figure (18):	Photomicrograph, showing remarkable	71
	thiness of epidermal layer.	
Figure (19A):	Photomicrograph showing the presence	71
	of well defined epidermal ridges and	
	dermal papillae.	
Figure (19B):	Large magnification of previous	72
	photomicrograph.	
Figure (20A):	Deep dermal burn of lower half of left	73
	leg and foot	
Figure (20B):	Coverage of deep dermal burn of left leg	73
	by microskin grafts.	
Figure (21A):	Full thickness burn of left forearm.	74
Figure (21B):	Coverage by microskin grafts (ventral	74
	view).	
Figure (21C):	Coverage by microskin grafts (dorsal	74
	view).	

Figure (22A):	Photomicrograph showing normal	75
	histological characteristics, represented	
	by epidermal and dermal layering.	
Figure (22B):	Large magnification of previous	75
	photomicrograph.	
Figure (23):	Photomicrograph showing detached	76
	keratin layer and an indistinct cellular	
	boundries of the keratinocytes .	
Figure (24):	Photomicrograph showing bacterial	76
	contamination on keratinocyte culture.	
Figure (25):	Photomicrograph showing cultured	77
	keratinocytes making colonies.	
Figure (26A):	Post burn raw area on right forearm.	77
Figure (26B):	Showing 15% achievement using	78
	cultured keratinocytes cell suspension in	
	coverage of post burn raw area.	
Figure (27A):	Photomicrograph, notice the defective	78
	keratinization, ill defined cellular	
	boundaries, ill defined dermal-epidermal	
	junction and irrigular distribution of	
	apparent pigment cells.	
Figure (27B):	Large magnification of previous	79
	photomicrograph.	

LIST OF TABLES AND DIAGRAMS

Table (1):	American Burn Association's classification of burns	17
Table (2):	Showing 10 patients who were treated by meshed graft technique (group I).	63
Table (3):	Showing 10 patients who were treated by micro skin graft technique (group II).	64
Table (4):	Showing 4 laboratory trials for burn wound coverage by culturing keratinocytes with one successful application on post burn raw area (group III).	65
Diagram (1):	Difference between the three groups as regards the percentage of treated areas, graft take, epithelialization and healing time in days.	66

LIST OF ABBREVIATIONS

CEA	Cultured Epidermal Autograft
EGF	Epidermal Growth Factor
FBS	Fetal Bovine Serum
Fig.	Figure
НЕРА	High Efficiency Particulate Air
H & E	Hematoxline and eosin
KBM	Keratinocytes Basal Medium
P/S	Penicillin / Streptomycin
STSG	Split Thickness Skin Graft
TBSA	Total Body Surface Area

Introduction

Advances in the critical care, resuscitation, ventilation, and nutritional management have improved survival after severe burn. However, the extensive damage caused by massive burns still constitutes a major surgical challenge for wound coverage and healing (Atiyeh Bishara et al., 2005).

Methods for handling burn wounds have changed in recent decades. Aggressive surgical approach with early tangential excision and wound closure is being increasingly applied. Surgeons now face the challenge of excising and grafting larger burns with limited autograft availability. In such cases, it is necessary to find alternatives to conventional split-thickness skin autografts (*Ronfard et al.*, 2000).

Transplantation of split-thickness skin grafts (STSG) harvested from healthy donor sites is the standard method for burn wound closure and remains the mainstay of treatment to provide permanent wound coverage (Holmes et al., 2003). Even though harvesting of autologous skin grafts is associated with additional scarring (Gajiwala et al., 2004), autologous split-thickness

graft is still considered the ideal skin replacement (Pellegrini, 1999).

In some severely burned patients, the burns are so extensive that donor site availability is limited by the disparity between burned and unburned tissue. This may be further complicated by donor site unsuitability for harvest (e.g. face, hands, feet, axilla, perineum) so that the surgical treatment of these patients becomes a very difficult task. Furthermore, dermal thickness may limit the number of harvests at any one site to three or four times, and the time required for re-epithelialization delays recropping. Such limitations have driven the search for alternative means to resurface the burn patient and achieve healing (Williamson et al., 1995).

The Meek–Wall dermatome was described in 1958 and allows cutting of postage stamp skin grafts suitable for grafting of an area larger than the donor site. This method was eclipsed, however, by the introduction of meshed skin grafts which are less time consuming and easier to perform (Raff et al., 1995). Tanner et al., (1964), presented the technique of meshed skin graft by which they could cover three times the donor area with good take, improved drainage, and rapid epithelialization of the interstices. The meshed split thickness skin graft might be

expanded up to 1-6 or 1-9 ratios to cover extensive burns (Hurt and Erikson, 1986), but this is associated with decreased take, excessive scarring and poor cosmetic appearance (Alexander et al., 1981, and Herd et al., 1987).

Based on the antigenic disparity between the and the dermis, several methods were epidermis described to burn wound by homocover autografting. These include using alternate strips of homoand autografts (Jackson, 1954), the Chinese concept of intermingled auto-allografting (Yang et al., 1980 and 1982). However, these techniques could achieve only limited expansion in surface area. Zhang et al., (1986), described a technique that enabled skin cover to be obtained in patients who had suffered major burns. This technique involved using finely minced autografts on the undersurface of cadaveric allografts. Their published results demonstrated a major advance in burns surgery management. However, this technique has not been widely applied, partly because of the risks associated with HIV and hepatitis transmission and also the problems of obtaining fresh allograft tissue. Large expansions result in delayed healing, scar hypertrophy, and contracture. Such problems have been overcome somewhat by overlaying the interstices with allograft or synthetics. The autograft

resurface the wound and the overlay is subsequently rejected (*Tanner et al., 1969*).

When donor sites are not sufficient to prepare enough meshed grafts, the permanent coverage of burn wounds with cultured autografts becomes life saving (Pellegrini et al., 1999). Fortunately, considerable progress has been made in the culture of human keratinocytes and it is now possible to obtain large amounts of cultured epithelium from a small skin biopsy within 3 to 4 weeks (Ronfard et al., 2000). The ability to grow keratinocytes in vitro and generate cohesive sheets of stratified epithelium which maintains the characteristics of authentic epidermis was developed by Rheinwald and Green in 1975 and is the most commonly used technology for producing graftable epithelium (Ronfard et al., 2000).

The cultured keratinocyte sheets have several drawbacks. Three to five weeks are required to prepare sheets before being ready for grafting (O'Connor et al., 1981). Cultured epidermal cells separated by dispase II fail to attach or proliferate on dermal collagen membrane (Boyce and Hansbrough, 1988), do not show hemidesmosomes (Aihara, 1989), and show microscopic blebbing at the basal side, which might represent cell iniury and affect cell function and/or attachment

(Compton et al., 1989). Cultured keratinocytes tend to differentiate as cultivation progresses and this could be another reason for poor graft attachment (Kumagai et al., 1988).

The time needed to use cultured keratinocytes to cover a burn wound was reduced to 3 weeks by late 1980s and early 1990s (Compton, 1993). Stark et al., 1995 developed suspension in Fibrin glue and reduced the time for clinical use to 14 days. Some groups approached the reduction in time by developing a technique of delivering a suspension of cells to the wound surface reducing the laboratory culture time to 5-7 days (Dvorankova et al., 1998). Wood et al. (2006) stated that in Western Australia, the technology developed rapidly from the use of confluent epidermal sheets that comprised predominantly of keratinocytes to the use of pre-confluent cells in suspension delivered as an aerosol onto the wound surface (now called Cell Spray).