


EVALUATION OF DIFFERENT RETAINER AND FRAMEWORK DESIGNS ON THE FRACTURE RESISTANCE AND MARGINAL ADAPTATION OF POSTERIOR ZIRCONIA ALL-CERAMIC FIXED PARTIAL DENTURES

THESIS

Submitted to the Faculty of Oral and Dental Medicine Cairo University in Partial Fulfillment of the Requirements for the Doctor's Degree in Dental Surgery (Fixed Prosthodontics)

BY Rasha Nabil Mohammed Sami

"B.D.S.; M.D.S" (Cairo)
Faculty of Oral and Dental Medicine
Cairo University

LIST OF CONTENTS

Pag	e No.
DEDICATION	i
ACKNOWLEDGEMENT	ii
LIST OF FIGURES	iii
LIST OF TABLES	ix
INTRODUCTION	1
REVIEW OF LITERATURE	4
AIM OF THE STUDY	63
MATERIALS AND METHODS	64
RESULTS	103
DISCUSSION	126
SUMMARY	145
CONCLUSIONS	149
RECOMMENDATIONS	150
REFERENCES	151
ARABIC SUMMARY	

LIST OF FIGURES

Eiguro		Page
Figure No.	TITLE	No.
1	Metal die models of group I (FCR)	68
2	Metal dies with interproximal box preparation (F_{IB})	68
3	Metal dies with interproximal groove preparation (F_{IG})	69
4	Model of inlay-retained restoration (I_{CR})	69
5	Silicone duplicates for the metal dies	71
6	Stone model ready for scanning	71
7	Scan model positioned on the L-shaped holder	71
8	CEREC inLab system	73
9	Scanning of the plaster model	73
10	Image of scanned model on the screen	74

Figure		Page
No.	TITLE	
11	Image after removal of unwanted regions	74
12	Wax pattern of group IV _(ICR)	76
13	Pattern sprayed with reflecting agent	76
14	Pattern in the chamber ready for scanning	77
15	Image of scanned pattern of group IV (I_{CR})	77
16	Margins of preparation and pontic	79
17	Calculating the framework	79
18	Tools for adjustment of bridge framework	80
19	Adjusted bridge framework	80
20	Finished restoration in the milling simulation.	82
21	Checking of the outer surface of the framework	82
22	Designing the framework for group IV(I _{CR})	83

Figure No.	TITLE	Page No.
23	Adjusted framework	83
24	Selecting the type of block used for milling	85
25	Insertion of ceramic block	85
26	Vita In-Ceram Zirconia blocks	86
27	Ceramic block inserted in milling chamber	86
28	Milling process of the ceramic frameworks	88
29	Checking of the frameworks on their corresponding dies	88
30	Application of glass	90
31	Framework after glass application	90
32	INCERAMAT furnace	90
33	Glass-infiltrated frameworks	90
34	Traveling Microscope	93

Figuro		Page
Figure No.	TITLE	No.
35	Panavia resin cement	93
36	Infiltrated framework cemented on epoxy die.	93
37	Lloyd universal testing machine	95
38	Fracture load testing	95
39	Sputter coating machine	96
40	Scanning electron microscope	96
41	Clinical case pre-operative	99
42	After teeth preparation	99
43	Finished restoration	99
44	Mean vertical gap distance values (µm) for the buccal surface of the premolar retainer in the four different groups	106

Figure		Page
No.	TITLE	No.
45	Mean vertical gap distance values (µm) for the lingual surface of the premolar retainer in the four different groups	106
46	Mean vertical gap distance values (µm) for the mesial and distal surfaces of the premolar retainer in the four different groups	108
47	Mean vertical gap distance values (µm) of all the surfaces of the premolar retainer in the four different groups	108
48	Mean vertical gap distance values (µm) for the buccal surface of the molar retainer in the four different groups	111
49	Mean vertical gap distance values (µm) for the lingual surface of the molar retainer in the four different groups	111
50	Mean vertical gap distance values (µm) for the mesial and distal surfaces of the molar retainer in the four different groups	113

Figure No.	TITLE	Page No.
51	Mean vertical gap distance values (µm) for all the surfaces of the molar retainer in the four different groups	113
52	Fracture site for group $I(F_{CR})$ frameworks	115
53	Fracture site for group II(F _{IB}) frameworks	115
54	Fracture site for group III(F _{IG}) frameworks	115
55	Fracture site for group IV(I _{CR}) frameworks	115
56	Mean fracture load values (N) for the four different tested groups	118
57	Scanning electron micrographs of group $I(F_{CR})$	120
58	Scanning electron micrographs of group $\mathrm{II}(F_{IB})$	121
59	Scanning electron micrographs of group $\mathrm{III}(F_{IG})$	123
60	Scanning electron micrographs of group $IV(I_{CR})$	124

LIST OF TABLES

Table No.	TITLE	Page No.
1	Fixed-Partial Dentures Grouping	65
2	Clinical prosthodontic evaluation	101
3	Criteria for periodontal evaluation	102
4	Mean vertical marginal gap distance values (µm) at each surface for the premolar retainer in the four different groups	104
5	Mean vertical marginal gap distances values (µm) at each surface for the molar retainer in the four different groups	110
6	Mean fracture load values (N) for the four different groups	117
7	Results of Prosthodontic Evaluation	125
8	Results of Periodontal Evaluation	125

EVALUATION OF DIFFERENT RETAINER AND FRAMEWORK DESIGNS ON THE FRACTURE RESISTANCE AND MARGINAL ADAPTATION OF POSTERIOR ZIRCONIA ALL-CERAMIC FIXED PARTIAL DENTURES

KEYWORDS

KEYWORDS: In-Ceram zirconia, all-ceramic, posterior fixed partial dentures, framework designs, marginal adaptation, inlay retained fixed partial dentures, fracture resistance, inter-proximal box preparation, Cerec In-Lab, CAD/CAM.

DEDICATION

T o the memory of my dear *father*, who I miss so much, and was always wishing to share me this occasion.

To my great *mother* for her continuous support and without her constant encouragement and understanding, this work would have not been possible.

To my only *brother* and *sister* who gave me a lot of their time, unlimited effort and great help throughout this work.

I must thank my dear *husband* for his support and understanding, moreover, I must apologize to him and to my dearest *Mariam* and *Mostafa*, to whom I present this thesis, for missing me some times during the course of my study and hope they will forgive me.

ACKNOWLEDGEMENT

First of all, thanks to **ALLAH** who enabled me to overcome all problems which faced me throughout the work.

I would like to express my sincere gratitude and great appreciation to *Dr. Ashraf Omar El-Karaksy*, Professor of Fixed Prosthodontics, Fixed Prosthodontics Department, Cairo University, for his faithful guidance, kind supervision, continuous encouragement, as well as keen care during the periodical and final revision of this work.

I am greatly indebted to *Dr. Mohammed Labib Zamzam*, Associate Professor of Fixed Prosthodontics, Fixed Prosthodontics Department, Cairo University, for his valuable advises, continuous support, great help and useful remarks, he willingly gave me during my work.

Particular gratitude are due to *Dr. Mohamed Seoudy*, Physics Department, Faculty of Science, Ain Shams University, for his expanded effort, and great help in the marginal adaptation measures of all my specimens.

Last but not the least, I would like to thank my colleague *Ahmed Sulaiman*, who kindly helped me during the laboratory procedures of this work, and to all staff members and colleagues of the Fixed Prosthodontics Department, Cairo University, I would like to express my gratitude and thanks for their kindness, cooperation and help.

INTRODUCTION

Patients' esthetic expectations and the need for biologically compatible materials have led to the increased use of all-ceramic restorations.

The physico-chemical characteristics and vitreous nature of dental ceramic materials provide an attractive appearance and enable the restoration to resist degradation in the oral environment.

Metal-ceramic restorations are usually selected when a fixed partial denture (FPD) is required. However, such restorations have several disadvantages because of the different physico-chemical properties of metal and ceramic veneer that may result in porcelain fracture. Moreover, the physical characteristics of the metal substructure reduce the translucence of the ceramic veneering material. To avoid this problem, reinforced ceramic materials have been developed that enable crowns and FPDs to be made without a metal substructure.

Although, many all-ceramic systems are strong enough to be used on anterior teeth, few all-ceramic systems have been strong enough to perform well on posterior teeth as FPDs.