

﴿ قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إلاَّ مَا عَلَّمْتَنَا إِنْكَ أَنتَ الْعَلِيمُ الْحَكِيمُ

صدق الله العظيم سورة البقرة آية (32) Evaluation of Postoperative Surgical Risk of Using Saphenous Vein Only Versus Saphenous Vein with Unilateral Mammary Artery as Grafts in Coronary Artery Bypass Graft Operation

Thesis

Submitted for Partial Fulfillment of MD Degree in Cardiothoracic Surgery

Presented by

Mohamed Ahmed Gamal Mostafa Ahmed

(M.B., B.Ch., MS) General Surgery – Ain Shams University

Under Supervision of

Prof. Dr. Walaa Ahmed Saber Abdel-Hameed

Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Prof. Dr. Hossam Fadel El-Shahawy

Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Prof. Dr. Osama Abbas Abdel-Hameed

Associate Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Dr. Hany Hassan Mohamed El-Said

Lecturer of Cardiothoracic Surgery
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2013

LIST OF CONTENTS

Title	Page
♦ Introduction	1
♦ Aim of the Work	3
• Review of the Literature:	
◆ Chapter 1: Historical Background	4
♦ Chapter 2: Anatomy	8
Coronary Artery Anatomy	8
Coronary Vein Anatomy	17
Internal Thoracic Artery	20
Great Saphenous Vein	25
◆ Chapter 3: Normal Coronary Blood Flow	29
◆ Chapter 4: Pathophysiology of Atherosclerosis	32
• Chapter 5: Indication of Revascularization	50
• Chapter 6: Conduit Options in Coronary Artery	
Bypass Surgery	60
◆ Chapter 7: Blood Supply to the Sternum	85
◆ Chapter 8: Prediction of Operative Risk	97
• Chapter 9: Risk Factors Associated with Deep	
Sternal Site Infection	
♦ Patients and Methods	
♦ Results	
♦ Discussion	
Summary and Conclusion	
Study Limitations	
♦ References	168
♦ Arabic Summary	

LIST OF ABBREVIATIONS

ACC	American college of cardiology
ACE	Angiotensin-converting enzyme
АНА	American heart association
AIV	Anterior interventricular vein
ATP	Adenosine triphosphate
AV node	Atrioventricular node
BARI	Bypass angioplasty revascularization investigators
BMI	Body mass index
CABG	Coronary artery bypass graft
CAD	Coronary artery disease
СВС	Complete blood count
CBG	Coronary bypass graft
ccs	Canadian cardiovascular society
CCU	Coronary care unit
CoNS	Coagulase negative staphylococci
COPD	Chronic obstructive pulmonary disease
СРВ	Cardiopulmonary bypass
CPR	Cardiopulmonary resuscitation
CVA	Cerebrovascular accident
CVP	Central venous pressure
DM	Diabetes mellitus
DSSI	Deep sternal site infection

LIST OF ABBREVIATIONS (CONT.)

ECCT	Extracorporeal circulation time
ECG	Electrocardiogram
ECM	Extracellular matrix
EDD	End diastolic diameter
EDRF	Endothelium derived relaxing factor
EF	Ejection fraction
ESD	End systolic diameter
GCV	Great cardiac vein
GEA	Gastroepiploic artery
GSV	Great saphenous vein
HGB	Hemoglobin
HTN	Hypertension
IABP	Intraaortic balloon pump
ICS	Intercostal space
ICU	Intensive care unit
IEA	Inferior epigastric artery
IMA	Internal mammary artery
IS	Intercostal space
ITA	Internal thoracic artery
IV	Intravenous
LAD	Left anterior descending
LIMA	Left internal mammary artery
LITA	Left internal thoracic artery
LSV	Long saphanous vein

LIST OF ABBREVIATIONS (CONT.)

	T C 1
LV	Left ventricle
LVEF	Left ventricular ejection fraction
MCV	Middle cardiac vein
MI	Myocardial infarction
PAP	Pulmonary artery pressure
PCI	Percutaneous coronary intervention
PTCA	Percutaneous transluminal coronary angioplasty
PTFE	Polytetrafluoroethylene
RA	Radial artery
RGEA	Right gastrtoepiploic artery
RIMA	Right internal mammary artery
sv	Saphenous vein
scv	Small cardiac vein
SITA	Single internal thoracic artery
SMC	Smooth muscle cell
SSI	Surgical site infections
ssv	Short saphenous vein
SVG	Saphenous vein graft
TTC	Triphenyl tetrazolium chloride
U.S	United State
U.K	United kingdom

LIST OF TABLES

Tab. No	Title	Page
Table (1):	Origin of the Internal Mammary Arteries	21
Table (2):	Level of Termination of Internal Mammary Artery	24
Table (3):	Approximate time of onset and recognition of key features of ischemic myocardial injury	39
Table (4):	Canadian cardiovascular society angina classification	51
Table (5):	AHA/ACC guideline for CABG	54-5
Table (6):	Conduits for CABG	61
Table (7):	Patency of Free IMA in Bilateral Grafts	76
Table (8):	Number of the Branches in the Corresponding Intercostal Space of the Left or Right Interal Thoracic Artery	93
Table (9):	Risk factors associated with post-operative sternal wound infection	102
Table (10):	Description of personal and preoperative risk factors among group A	125
Table (11):	Description of personal and preoperative risk factors among group (B)	125
Table (12):	Comparison between two study groups as regard personal and preoperative risk factors	126
Table (13):	Description of Preoperative ECHO and preoperative catheterization among group A	128

LIST OF TABLES (CONT.)

Tab. No	Title	Page
Table (14):	Description of Preoperative ECHO and preoperative catheterization among group (B)	129
Table (15):	Comparison between two study groups as regard preoperative ECHO and preoperative catheterization	129
Table (16):	Description of cardiac support given among group A	131
Table (17):	Description of cardiac support needed among group B	132
Table (18):	Comparison between two study groups as cardiac support given to the patients	132
Table (19):	Description of surgical details among group A	134
Table (20):	Description of surgical details among group B	135
Table (21):	Comparison between two study groups as regard surgical details	136
Table (22):	Description of Postoperative ECHO among group A	138
Table (23):	Description of Postoperative ECHO among group B	139
Table (24):	Comparison between two study groups as regard post operative echo parameters	140
Table (25):	Description of Postoperative CBC, renal and liver function among group A	142

LIST OF TABLES (CONT.)

Tab. No	Title	Page
Table (26):	Description of Postoperative CBC, renal and liver function among group B	142
Table (27):	Comparison between two study groups as regard post operative CBC, Renal and liver functions	143
Table (28):	Description of sternal dehiscence and mortality among group A	144
Table (29):	Description of sternal dehiscence and mortality among group B	144
Table (30):	Comparison between two study groups as regard sternal dehiscence and mortality	145
Table (31):	Comparison between ECHO parameters before and after Operation among group A	145
Table (32):	Comparison between ECHO parameters before and after Operation among group B	146
Table (33):	Comparison between two study groups as regard change in ECHO parameters before and after Operation	147
Table (34):	Comparison between two study groups as regard change in ECHO parameters before and after Operation using interquartile range.	147

LIST OF FIGURES

Fig. No	Title	Page
Figure (1):	Coronary ostia	8
Figure (2):	Division of Coronary arteries	
Figure (3):	Diagram showing myocardial perfusion patterns of major epicardial coronary arteries	
Figure (4):	Blood supply to the Interventricular Septum	15
Figure (5):	Coronary veins	18
Figure (6):	Internal thoracic artery	20
Figure (7):	The great saphenous vein and landmarks along its course	25
Figure (8):	The great saphenous vein and its tributaries	27
Figure (9):	Consequences of coronary arterial atherosclerosis	36
Figure (10):	Summary of the pathology, pathogenesis, complications, and natural history of atherosclerosis	37
Figure (11):	Temporal sequence of early biochemical, ultrastructural, histochemical, and histologic findings after onset of severe myocardial ischemia	44
Figure (12):	Morphologic effects of reperfusion following severe myocardial ischemia	46
Figure (13):	Internal thoracic artery (ITA) harvest	71
Figure (14):	T- graft	78
Figure (15):	Angiograms of the infant and adult internal thoracic arteries	87

LIST OF FIGURES (CONT.)

Fig. No	Title	Page
Figure (16):	Schematic drawings of the sternal branches	88
Figure (17):	Morphologic variants of the sternal blood supply	89
Figure (18):	Landmark of saphenous vein	111
Figure (19):	Exposure of the saphenous vein	112
Figure (20):	Vein excision, hemostasis and then wound closure	113
Figure (21):	Site of internal mammary artery	114
Figure (22):	Internal thoracic artery (ITA) harvest	115
Figure (23):	Comparison between two study groups as regard preoperative risk factors	127
Figure (24):	Comparison between two study groups as cardiac support given to the patients	130
Figure (25):	Comparison between two study groups as regard blood loss and blood transfusion	137
Figure (26):	Comparison between two study groups as regard post operative echo parameters	141
Figure (27):	Postoperative renal and liver function	143

ACKNOWLEDGEMENT

Thanks first and last to **Allah** for helping me to proceed and complete this work.

I would like to express my deepest gratitude, sincere appreciation and respect to **Prof. Dr. Walaa Ahmed Saber Abdel-Hameed**, Professor of Cardiothoracic Surgery, Ain Shams University, for the continuous encouragement, guidance and support he gave me throughout the whole work. It has been a great honor for me to work under his generous supervision.

I hereby wish to express my supreme gratitude and respect to **Prof. Dr. Hossam Fadel El-Shahawy**, Professor of Cardiothoracic Surgery, Ain Shams University for his kind guidance and support throughout the study.

I would like to express my deepest thanks and great gratitude to **Prof. Dr. Osama Abbas Abdel-Hameed,** Assistant Professor of Cardiothoracic Surgery, Ain Shams University, for his great help.

I would like to express my deepest thanks and great gratitude to **Dr. Hany Hassan Mohamed El-Said,** Lecturer of Cardiothoracic Surgery, Ain Shams University, for his great help, meticulous supervision and precious remarks during all stages of preparation of this work.

A special tribute and appreciation to **my colleagues** of Cardiothoracic Surgery department, Ain Shams University, for there support to finish this work.

I would also like to record my thanks and appreciation to **my family** for their support and encouragement. This indeed is a debt I could not ignore, or forget.

Mohamed A. Gamal

Abstract

Background:

The optimum conduit is still in debate in patients with ischemic heart disease especially in patients with high risk for dehiscent sternum.

Objective:

The aim of the work is to compare and evaluate the post operative surgical risk of using saphenous vein only versus saphenous vein with unilateral mammary artery in coronary artery bypass graft (CABG) operation as regard blood loss, transfusion requirement, incidence of cardiac tamponade, reoperation for bleeding, and sternal complications and its short term clinical outcome.

Methods:

In a prospective randomized trial 60 patients with coronary artery stenotic disease undergoing coronary artery bypass grafting were divided into two groups with saphenous vein only (group A, n = 30) and saphenous vein with unilateral mammary artery (group B, n = 30). In addition to routine electrocardiogram monitoring, Echocardiography was performed preoperatively and before hospital discharge. Aortic crossclamp time, total cardiopulmonary bypass time, amount of blood loss and blood transfusion were recorded. Also following up for dehiscent sternum within first six months after CABG was recorded.

Results:

As regard preoperative data Group A had significantly higher age (56 ± 6.1) and weight (95.13 ± 5.66) compared to group B. Also females were significantly higher among group A (56.7%). And there is no

significant difference between two groups as regard the presence of DM and HTN, while Preoperative EF was significantly higher among group B (53.1.±8.68) compared to group A (38.8.±3.8). But as regard operative data Group A had significantly lower use of adrenaline compared to group B, while there is no significant difference was detected between two groups as regard need of noradrenaline or IABP. As regard perioperative data Group A had highly significant lower cross clamp time compared to group B, while there is no significant difference was detected between two groups as regard ventilation period or reexploration but there is significant differences in ICU stay period. And there is highly significant differences in blood loss and blood (and or blood product) given which were lower in group A, There is highly significant difference in changes happened in EF in group A, But there is no significant difference between two groups as regard dehiscent sternum after following up of the patients within 6 months.

Conclusion:

The technique of using all veins for coronary revascularization is relatively efficient, and safe especially in patients with low ejection fraction according to short term clinical follow up.

Introduction

The heart of humans is perfused by blood ejected from the left ventricle that leaves the aorta via the right and left coronary arteries (*Bladergroen et al.*, 1990).

In most patients undergoing cardiac surgery, coronary blood supply or the myocardium, or both is not normal and is therefore particularly susceptible to ischemia and reperfusion damage. Stenotic atherosclerotic coronary artery disease is a narrowing of the coronary arteries caused by thickening and loss of elasticity of their arterial walls that, when sufficiently severe, limits blood flow to the myocardium (*Nicholas et al.*, 2003)

The prime objective of coronary artery bypass grafting surgery is to obtain complete revascularization by bypassing all severe stenoses (at least 50% diameter reduction) in all coronary arterial trunks and branches having a diameter of about 1mm or more (*Nicholas et al.*, 2003; Jones et al., 1983).

Saphenous vein grafts undergo a degenerative change in the intermediate to long term that ultimately limits graft patency. As a result there has been a trend to use arterial grafts in younger patients (*Ian and Hugh*, 1997).